Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 14: 1027380, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36819063

RESUMO

Little is known about the gene expression program during the transition from lysogenic to lytic cycles of temperate bacteriophages in Pseudomonas aeruginosa. To investigate this issue, we developed a thermo-sensitive repressor mutant in a lysogen and analyzed the phage transcriptional program by strand-specific RNA-Seq before and after thermo-induction. As expected, the repressor gene located on the phage DNA forward strand is transcribed in the lysogen at the permissive temperature of 30°C. Upstream the repressor gene, we noticed the presence of two overlapped ORFs apparently in the same transcript. One ORF is a gene that encodes a protein of 7.9 kDa mediating the exclusion of various super-infecting phages. The other ORF, placed in an alternate reading frame with a possible AUG initiation codon at 25 nucleotide downstream of the AUG of the first gene, is expected to encode a 20.7 kDa polypeptide of yet an unknown function. Upon lifting repression at 40°C, the transcription of an operon which is involved in the lytic cycle is started from a promoter on the reverse phage DNA strand. The first gene in the operon is a homolog of the antirepresor ner, a common gene in the lysis-lysogeny regulation region of other phages. Interestingly, the next gene after ner is gene 10 that on the reverse strand overlaps the overlapped gene olg1 on the forward strand. Curiously, gene 10 expression also shows superinfection exclusion. Strand-specific RNA-Seq also has uncovered the transcription succession of gene modules expressed during the phage lytic stage. The conservation of overlapped genes with similar functions may be evolutionarily selected.

2.
Nucleic Acids Res ; 35(17): 5966-74, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17726048

RESUMO

In an effort to improve the knowledge about the rules which direct the effect of the early ORF sequences on translation efficiency, we have analyzed the effect of pairs of the six arginine codons at the second and third positions on the expression of lacZ variants. Whereas the pairs of identical AGA or AGG codons were favorable for the gene expression, identical pairs of each of the four CGN codons were very inefficient. This result was unexpected because tandems of AGA or AGG codons located in more internal gene positions provoke deficient expression whilst internally located CGU and CGC are the most abundant and efficiently translated arginine codons. The mixed combinations of AGA and each of the CGN codons usually resulted in efficient rates of lacZ expression independently of the peptidyl-tRNA propensity to dissociate from the ribosome. Thus, the variant harboring the pair of AGA codons was expressed as efficiently as the variant carrying a pair of AAA codons in the same positions, a configuration reported as one of the most common and efficient for gene expression. We explain these results assuming that the presence of adenines in these early positions enhance gene expression. As expected, specific mRNA levels correlated with the intensity of lacZ expression for each variant. However, the induction of lacZ AGA AGA gene in pth cells accumulated peptidyl-tRNA(Arg4) as well as a short 5'-proximal lacZ mRNA fragment suggesting ribosome stalling due to depletion of aminoacylated-tRNA(Arg4).


Assuntos
Arginina/metabolismo , Códon/química , Regulação Bacteriana da Expressão Gênica , Biossíntese de Proteínas , Hidrolases de Éster Carboxílico/genética , Códon de Iniciação , Escherichia coli/genética , Escherichia coli/metabolismo , Genes Reporter , Variação Genética , Mutação , RNA Mensageiro/metabolismo , Aminoacil-RNA de Transferência/metabolismo , beta-Galactosidase/biossíntese , beta-Galactosidase/genética
3.
Nucleic Acids Res ; 32(15): 4462-8, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15317870

RESUMO

Minigenes encoding the peptide Met-Arg-Arg have been used to study the mechanism of toxicity of AGA codons proximal to the start codon or prior to the termination codon in bacteria. The codon sequences of the 'mini-ORFs' employed were initiator, combinations of AGA and CGA, and terminator. Both, AGA and CGA are low-usage Arg codons in ORFs of Escherichia coli but, whilst AGA is translated by the scarce tRNA(Arg4), CGA is recognized by the abundant tRNA(Arg2). Overexpression of minigenes harbouring AGA in the third position, next to a termination codon, was deleterious to the cell and led to the accumulation of peptidyl-tRNA(Arg4) and of the peptidyl-tRNA cognate to the preceding CGA or AGA Arg triplet. The minigenes carrying CGA in the third position were not toxic. Minigene-mediated toxicity and peptidyl-tRNA accumulation were suppressed by overproduction of tRNA(Arg4) but not by overproduction of peptidyl-tRNA hydrolase, an enzyme that is only active on substrates that have been released from the ribosome. Consistent with these findings, peptidyl-tRNA(Arg4) was identified to be mainly associated with ribosomes in a stand-by complex. These and previous results support the hypothesis that the primary mechanism of inhibition of protein synthesis by AGA triplets in pth+ cells involves sequestration of tRNAs as peptidyl-tRNA on the stalled ribosome.


Assuntos
Arginina/genética , Códon/genética , Biossíntese de Proteínas , Aminoacil-RNA de Transferência/metabolismo , Ribossomos/genética , Códon/toxicidade , Códon de Iniciação , Códon de Terminação , Escherichia coli/genética , Cinética , Oligopeptídeos , Terminação Traducional da Cadeia Peptídica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...