Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antibiotics (Basel) ; 12(4)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37106995

RESUMO

Virulent Enterobacterale strains expressing serine and metallo-ß-lactamases (MBL) genes have emerged responsible for conferring resistance to hard-to-treat infectious diseases. One strategy that exists is to develop ß-lactamase inhibitors to counter this resistance. Currently, serine ß-lactamase inhibitors (SBLIs) are in therapeutic use. However, an urgent global need for clinical metallo-ß-lactamase inhibitors (MBLIs) has become dire. To address this problem, this study evaluated BP2, a novel beta-lactam-derived ß-lactamase inhibitor, co-administered with meropenem. According to the antimicrobial susceptibility results, BP2 potentiates the synergistic activity of meropenem to a minimum inhibitory concentration (MIC) of ≤1 mg/L. In addition, BP2 is bactericidal over 24 h and safe to administer at the selected concentrations. Enzyme inhibition kinetics showed that BP2 had an apparent inhibitory constant (Kiapp) of 35.3 µM and 30.9 µM against New Delhi Metallo-ß-lactamase (NDM-1) and Verona Integron-encoded Metallo-ß-lactamase (VIM-2), respectively. BP2 did not interact with glyoxylase II enzyme up to 500 µM, indicating specific (MBL) binding. In a murine infection model, BP2 co-administered with meropenem was efficacious, observed by the >3 log10 reduction in K. pneumoniae NDM cfu/thigh. Given the promising pre-clinical results, BP2 is a suitable candidate for further research and development as an (MBLI).

2.
ACS Infect Dis ; 9(3): 486-496, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36786013

RESUMO

ß-lactams are the most prescribed class of antibiotics due to their potent, broad-spectrum antimicrobial activities. However, alarming rates of antimicrobial resistance now threaten the clinical relevance of these drugs, especially for the carbapenem-resistant Enterobacterales expressing metallo-ß-lactamases (MBLs). Antimicrobial agents that specifically target these enzymes to restore the efficacy of last resort ß-lactam drugs, that is, carbapenems, are therefore desperately needed. Herein, we present a cyclic zinc chelator covalently attached to a ß-lactam scaffold (cephalosporin), that is, BP1. Observations from in vitro assays (with seven MBL expressing bacteria from different geographies) have indicated that BP1 restored the efficacy of meropenem to ≤ 0.5 mg/L, with sterilizing activity occurring from 8 h postinoculation. Furthermore, BP1 was nontoxic against human hepatocarcinoma cells (IC50 > 1000 mg/L) and exhibited a potency of (Kiapp) 24.8 and 97.4 µM against Verona integron-encoded MBL (VIM-2) and New Delhi metallo ß-lactamase (NDM-1), respectively. There was no inhibition observed from BP1 with the human zinc-containing enzyme glyoxylase II up to 500 µM. Preliminary molecular docking of BP1 with NDM-1 and VIM-2 sheds light on BP1's mode of action. In Klebsiella pneumoniae NDM infected mice, BP1 coadministered with meropenem was efficacious in reducing the bacterial load by >3 log10 units' postinfection. The findings herein propose a favorable therapeutic combination strategy that restores the activity of the carbapenem antibiotic class and complements the few MBL inhibitors under development, with the ultimate goal of curbing antimicrobial resistance.


Assuntos
Carbapenêmicos , Inibidores de beta-Lactamases , Animais , Humanos , Camundongos , Carbapenêmicos/farmacologia , Inibidores de beta-Lactamases/farmacologia , Meropeném/farmacologia , Lactamas , Simulação de Acoplamento Molecular , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , beta-Lactamas/farmacologia , Monobactamas , Zinco/farmacologia
3.
J Biomol Struct Dyn ; 40(4): 1736-1747, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-33073714

RESUMO

HIV-1 protease (HIV-1 PR) is an essential enzyme for the replication process of its virus, and therefore considered an important target for the development of drugs against the acquired immunodeficiency syndrome (AIDS). Our previous study shows that the catalytic mechanism of subtype B/C-SA HIV-1 PR follows a one-step concerted acyclic hydrolysis reaction process using a two-layered ONIOM B3LYP/6-31++G(d,p) method. This present work is aimed at exploring the proposed mechanism of the proteolysis catalyzed by HIV-1 PR and to ensure our proposed mechanism is not an artefact of a single theoretical technique. Hence, we present umbrella sampling method that is suitable for calculating potential mean force (PMF) for non-covalent ligand/substrate-enzyme association/dissociation interactions which provide thermodynamic details for molecular recognition. The free activation energy results were computed in terms of PMF analysis within the hybrid QM(DFTB)/MM approach. The theoretical findings suggest that the proposed mechanism corresponds in principle with experimental data. Given our observations, we suggest that the QM/MM MD method can be used as a reliable computational technique to rationalize lead compounds against specific targets such as the HIV-1 protease.


Assuntos
Inibidores da Protease de HIV , HIV-1 , Protease de HIV/química , Inibidores da Protease de HIV/química , HIV-1/metabolismo , Simulação de Dinâmica Molecular , Termodinâmica
4.
J Biomol Struct Dyn ; 40(17): 7645-7655, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-33719919

RESUMO

Mycobacterium tuberculosis cell wall is intricate and impermeable to many agents. A D, D-carboxypeptidase (DacB1) is one of the enzymes involved in the biosynthesis of cell wall peptidoglycan and catalyzes the terminal D-alanine cleavage from pentapeptide precursors. Catalytic activity and mechanism by which DacB1 functions is poorly understood. Herein, we investigated the acylation mechanism of DacB1 by ß-lactams using a 6-membered ring transition state model that involves a catalytic water molecule in the reaction pathway. The full transition states (TS) optimization plus frequency were achieved using the ONIOM (B3LYP/6-31 + G(d): AMBER) method. Subsequently, the activation free energies were computed via single-point calculations on fully optimized structures using B3LYP/6-311++(d,p): AMBER and M06-2X/6-311++(d,p): AMBER with an electronic embedding scheme. The 6-membered ring transition state is an effective model to examine the inactivation of DacB1 via acylation by ß-lactams antibiotics (imipenem, meropenem, and faropenem) in the presence of the catalytic water. The ΔG# values obtained suggest that the nucleophilic attack on the carbonyl carbon is the rate-limiting step with 13.62, 19.60 and 30.29 kcal mol-1 for Imi-DacB1, Mero-DacB1 and Faro-DacB1, respectively. The electrostatic potential (ESP) and natural bond orbital (NBO) analysis provided significant electronic details of the electron-rich region and charge delocalization, respectively, based on the concerted 6-membered ring transition state. The stabilization energies of charge transfer within the catalytic reaction pathway concurred with the obtained activation free energies. The outcomes of this study provide important molecular insight into the inactivation of D, D-carboxypeptidase by ß-lactams.Communicated by Ramaswamy H. Sarma.


Assuntos
Mycobacterium tuberculosis , Peptidil Transferases , Acilação , Alanina/farmacologia , Antibacterianos/farmacologia , Carbono , Carboxipeptidases/metabolismo , Imipenem/farmacologia , Meropeném/farmacologia , Monobactamas/farmacologia , Peptidoglicano/metabolismo , Peptidil Transferases/química , Peptidil Transferases/metabolismo , Água , beta-Lactamas/química , beta-Lactamas/farmacologia
5.
Eur J Med Chem ; 224: 113705, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34303871

RESUMO

Computer-aided drug design (CADD) is one of the pivotal approaches to contemporary pre-clinical drug discovery, and various computational techniques and software programs are typically used in combination, in a bid to achieve the desired outcome. Several approved drugs have been developed with the aid of CADD. On SciFinder®, we evaluated more than 600 publications through systematic searching and refining, using the terms, virtual screening; software methods; computational studies and publication year, in order to obtain data concerning particular aspects of CADD. The primary focus of this review was on the databases screened, virtual screening and/or molecular docking software program used. Furthermore, we evaluated the studies that subsequently performed molecular dynamics (MD) simulations and we reviewed the software programs applied, the application of density functional theory (DFT) calculations and experimental assays. To represent the latest trends, the most recent data obtained was between 2015 and 2020, consequently the most frequently employed techniques and software programs were recorded. Among these, the ZINC database was the most widely preferred with an average use of 31.2%. Structure-based virtual screening (SBVS) was the most prominently used type of virtual screening and it accounted for an average of 57.6%, with AutoDock being the preferred virtual screening/molecular docking program with 41.8% usage. Following the screening process, 38.5% of the studies performed MD simulations to complement the virtual screening and GROMACS with 39.3% usage, was the popular MD software program. Among the computational techniques, DFT was the least applied whereby it only accounts for 0.02% average use. An average of 36.5% of the studies included reports on experimental evaluations following virtual screening. Ultimately, since the inception and application of CADD in pre-clinical drug discovery, more than 70 approved drugs have been discovered, and this number is steadily increasing over time.


Assuntos
Teoria da Densidade Funcional , Descoberta de Drogas , Simulação de Acoplamento Molecular , Software , Avaliação Pré-Clínica de Medicamentos
6.
Sci Rep ; 11(1): 8151, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33854091

RESUMO

Two Schiff bases, (E)-1-(4-methoxyphenyl)-N-((E)-3-(4-nitrophenyl)allylidene)methanamine (compound 1) and (E)-N-((E)-3-(4-nitrophenyl)allylidene)-2-phenylethanamine (compound 2) have been synthesized and characterized using spectroscopic methods; time of flight MS, 1H and 13C NMR, FT-IR, UV-VIS, photoluminescence and crystallographic methods. The structural and electronic properties of compounds 1 and 2 in the ground state were also examined using the DFT/B3LYP functional and 6-31 + G(d,p) basis set, while the electronic transitions for excited state calculations were carried out using the TD-DFT/6-31 + G(d,p) method. The Schiff base compounds, 1 and 2 crystallized in a monoclinic crystal system and the P21/c space group. The emission spectra of the compounds are attributed to conjugated π-bond interaction while the influence of the intra-ligand charge transfer resulted in a broad shoulder for 1 and a double emission peak for 2. The calculated transitions at 450 and 369 nm for 1 and 2 respectively are in reasonable agreement with the experimental results. The higher values of dipole moment, linear polarizability and first hyperpolarizability of 1, suggest a better optical property and better candidate for the development of nonlinear optical (NLO) materials.

7.
Org Biomol Chem ; 18(39): 7876-7883, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-32986056

RESUMO

In this study, a significantly improved method for the synthesis of modular meso-BODIPY (boron dipyrromethene) derivatives possessing a free carboxylic acid group (which was subsequently coupled to peptides), is disclosed. This method provides a vastly efficient synthetic route with a > threefold higher overall yield than other reports. The resultant meso-BODIPY acid allowed for further easy incorporation into peptides. The meso-BODIPY peptides showed absorption maxima from 495-498 nm and emission maxima from 504-506 nm, molar absorptivity coefficients from 33 383-80 434 M-1 cm-1 and fluorescent quantum yields from 0.508-0.849. The meso-BODIPY-c(RGDyK) peptide was evaluated for plasma stability and (proved to be durable even up to 4 h) was then assessed for its fluorescence imaging applicability in vivo and ex vivo. The optical imaging in vivo was limited due to autofluorescence, however, the ex vivo tissue analysis displayed BODIPY-c(RGDyK) internalization and cancer detection thereby making it a novel tumor-integrin associated fluorescent probe while displaying the lack of interference the dye has on the properties of this ligand to bind the receptor.

8.
Phys Chem Chem Phys ; 22(4): 2530-2539, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31942584

RESUMO

It is well known that understanding the catalytic mechanism of HIV-1 PR is the rationale on which its inhibitors were developed; therefore, a better understanding of the mechanism of natural substrate hydrolysis is important. Herein, the reaction mechanism of HIV-1 natural substrates with subtypes B and common mutant in South Africa (subtype C-SA) protease were studied through transition state modelling, using a general acid-general base (GA-GB) one-step concerted process. The activation free energies of enzyme-substrate complexes were compared based on their rate of hydrolysis using a two-layered ONIOM (B3LYP/6-31++G(d,p):AMBER) method. We expanded our computational model to obtain a better understanding of the mechanism of hydrolysis as well as how the enzyme recognises or chooses the cleavage site of the scissile bonds. Using this model, a potential substrate-based inhibitor could be developed with better potency. The calculated activation energies of natural substrates in our previous study correlated well with experimental data. A similar trend was observed for the Gag and Gag-Pol natural substrates in the present work for both enzyme complexes except for the PR-RT substrate. Natural bond orbital (NBO) analysis was also applied to determine the extent of charge transfer within the QM part of both enzymes considered and the PR-RT natural substrate. The result of this study shows that the method can be utilized as a dependable computational technique to rationalize lead compounds against specific targets.


Assuntos
Protease de HIV/metabolismo , Transcriptase Reversa do HIV/metabolismo , Simulação de Dinâmica Molecular , Teoria Quântica , HIV-1/enzimologia , Ligação de Hidrogênio , Hidrólise , Cinética , Ligação Proteica , Especificidade por Substrato , Termodinâmica
9.
Curr Med Chem ; 27(15): 2514-2549, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-30421668

RESUMO

Current investigations on the Human Immunodeficiency Virus Protease (HIV-1 PR) as a druggable target towards the treatment of AIDS require an update to facilitate further development of promising inhibitors with improved inhibitory activities. For the past two decades, up to 100 scholarly reports appeared annually on the inhibition and catalytic mechanism of HIV-1 PR. A fundamental literature review on the prerequisite of HIV-1 PR action leading to the release of the infectious virion is absent. Herein, recent advances (both computationally and experimentally) on the recognition mode and reaction mechanism of HIV-1 PR involving its natural targets are provided. This review features more than 80 articles from reputable journals. Recognition of the natural Gag and Gag-Pol cleavage junctions by this enzyme and its mutant analogs was first addressed. Thereafter, a comprehensive dissect of the enzymatic mechanism of HIV-1 PR on its natural polypeptide sequences from literature was put together. In addition, we highlighted ongoing research topics in which in silico methods could be harnessed to provide deeper insights into the catalytic mechanism of the HIV-1 protease in the presence of its natural substrates at the molecular level. Understanding the recognition and catalytic mechanism of HIV-1 PR leading to the release of an infective virion, which advertently affects the immune system, will assist in designing mechanismbased inhibitors with improved bioactivity.


Assuntos
HIV-1 , Protease de HIV , Inibidores da Protease de HIV , Humanos
10.
Curr Med Chem ; 27(19): 3250-3267, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-30501595

RESUMO

Peptidoglycan, the exoskeleton of bacterial cell and an essential barrier that protects the cell, is synthesized by a pathway where the final steps are catalysed by transpeptidases. Knowledge of the structure and function of these vital enzymes that generate this macromolecule in M. tuberculosis could facilitate the development of potent lead compounds against tuberculosis. This review summarizes the experimental and computational studies to date on these aspects of transpeptidases in M. tuberculosis that have been identified and validated. The reported structures of L,D- and D,D-transpeptidases, as well as their functionalities, are reviewed and the proposed enzymatic mechanisms for L,D-transpeptidases are summarized. In addition, we provide bioactivities of known tuberculosis drugs against these enzymes based on both experimental and computational approaches. Advancing knowledge about these prominent targets supports the development of new drugs with novel inhibition mechanisms overcoming the current need for new drugs against tuberculosis.


Assuntos
Mycobacterium tuberculosis , Proteínas de Bactérias , Parede Celular , Peptidoglicano , Peptidil Transferases
11.
J Mol Model ; 25(11): 328, 2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31656981

RESUMO

Virtual screening is a useful in silico approach to identify potential leads against various targets. It is known that carbapenems (doripenem and faropenem) do not show any reasonable inhibitory activities against L,D-transpeptidase 5 (LdtMt5) and also an adduct of meropenem exhibited slow acylation. Since these drugs are active against L,D-transpeptidase 2 (LdtMt2), understanding the differences between these two enzymes is essential. In this study, a ligand-based virtual screening of 12,766 compounds followed by molecular dynamics (MD) simulations was applied to identify potential leads against LdtMt5. To further validate the obtained virtual screening ranking for LdtMt5, we screened the same libraries of compounds against LdtMt2 which had more experimetal and calculated binding energies reported. The observed consistency between the binding affinities of LdtMt2 validates the obtained virtual screening binding scores for LdtMt5. We subjected 37 compounds with docking scores ranging from - 7.2 to - 9.9 kcal mol-1 obtained from virtual screening for further MD analysis. A set of compounds (n = 12) from four antibiotic classes with ≤ - 30 kcal mol-1 molecular mechanics/generalized born surface area (MM-GBSA) binding free energies (ΔGbind) was characterized. A final set of that, all ß-lactams (n = 4), was considered. The outcome of this study provides insight into the design of potential novel leads for LdtMt5. Graphical abstract.


Assuntos
Antituberculosos/farmacologia , Inibidores Enzimáticos/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Antibacterianos/farmacologia , Ligantes , Meropeném/farmacologia , Simulação de Acoplamento Molecular/métodos , Simulação de Dinâmica Molecular , Peptidil Transferases/antagonistas & inibidores , Ligação Proteica/efeitos dos fármacos
12.
J Phys Chem B ; 123(30): 6389-6400, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31283878

RESUMO

The Human Immunodeficiency Virus type 1 (HIV-1) protease is a crucial target for HIV/AIDS treatment, and understanding its catalytic mechanism is the basis on which HIV-1 enzyme inhibitors are developed. Several experimental studies have indicated that HIV-1 protease facilitates the cleavage of the Gag and Gag-Pol polyproteins and it is highly selective with regard to the cleaved amino acid precursors and physical parameters. However, the main theoretical principles of substrate specificity and recognition remain poorly understood theoretically. By means of a one-step concerted transition state modeling, the recognition of natural substrates by HIV-1 PR subtypes (B and C-SA) was studied. This was carried out to compare the activation free energies at varying peptide bond regions (scissile and nonscissile) within the polypeptide sequence using ONIOM calculations. We studied both P3-P3' and P5-P5' natural substrate systems. For P3-P3' substrates, excellent recognition was observed for the MA-CA family but not for the RH-IN substrates. Satisfactory recognition for the latter was only observed for the longer sequence (P5-P5') after the substrate was subjected to an MD run to maximize the interaction between the enzyme and the substrate. These results indicate that both sequence and structure are important for correct scissile bond recognition of these natural substrates.


Assuntos
Protease de HIV/química , HIV-1/enzimologia , Sequência de Aminoácidos , Protease de HIV/metabolismo , Concentração de Íons de Hidrogênio , Modelos Moleculares , Conformação Proteica , Especificidade por Substrato , Termodinâmica
13.
Chemphyschem ; 20(9): 1126-1134, 2019 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-30969480

RESUMO

ß-lactam antibiotics, which are used to treat infectious diseases, are currently the most widely used class of antibiotics. This study focused on the chemical reactivity of five- and six-membered ring systems attached to the ß-lactam ring. The ring strain energy (RSE), force constant (FC) of amide (C-N), acylation transition states and second-order perturbation stabilization energies of 13 basic structural units of ß-lactam derivatives were computed using the M06-2X and G3/B3LYP multistep method. In the ring strain calculations, an isodesmic reaction scheme was used to obtain the total energies. RSE is relatively greater in the five-(1a-2c) compared to the six-membered ring systems except for 4b, which gives a RSE that is comparable to five-membered ring lactams. These variations were also observed in the calculated inter-atomic amide bond distances (C-N), which is why the six-membered ring lactams C-N bond are more rigid than those with five-membered ring lactams. The calculated ΔG# values from the acylation reaction of the lactams (involving the S-H group of the cysteine active residue from L,D transpeptidase 2) revealed a faster rate of C-N cleavage in the five-membered ring lactams especially in the 1-2 derivatives (17.58 kcal mol-1 ). This observation is also reflected in the calculated amide bond force constant (1.26 mDyn/A) indicating a weaker bond strength, suggesting that electronic factors (electron delocalization) play more of a role on reactivity of the ß-lactam ring, than ring strain.


Assuntos
Antibacterianos/química , Peptidil Transferases/metabolismo , beta-Lactamas/química , Acilação , Simulação por Computador , Modelos Químicos , Modelos Moleculares , Estrutura Molecular , Peptidil Transferases/química , Teoria Quântica
14.
Protein J ; 38(1): 30-36, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30666487

RESUMO

HIV-1 is an infectious virus that causes acquired immunodeficiency syndrome (AIDS) and it is one of the major causes of deaths worldwide. The production of HIV-1 protease (PR) on a large scale has been a problem for scientists due to its cytotoxicity, low yield, insolubility, and low activity. HIV-1 C-SA protease has been cloned, expressed, and purified previously, however, with low recovery (0.25 mg/L). Herein we report an optimal expression and solubilisation procedure to recover active HIV-1 C-SA protease enzyme from inclusion bodies. The HIV protease was expressed in seven different vectors (pET11b, pET15b, pET28a pET32a, pET39b, pET41b and pGEX 6P-1). The highest expression was achieved when the vector pET32a (Trx tag) was employed. A total of 19.5 mg of fusion protein was refolded of which 5.5 mg of active protease was obtained after cleavage. The free protease had a high specific activity of 2.81 µmoles/min/mg. Interestingly the Trx-fusion protein also showed activity closer (1.24 µmoles/min/mg) to that of the free protease suggesting that the pET32a vector (Trx tag) expressed in BL21(DE3) pLysS provides a more efficient way to obtain HIV-1 protease.


Assuntos
Protease de HIV/química , Protease de HIV/isolamento & purificação , HIV-1/enzimologia , Corpos de Inclusão/enzimologia , Escherichia coli/química , Escherichia coli/genética , Protease de HIV/genética , HIV-1/genética , Corpos de Inclusão/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação
15.
J Mol Graph Model ; 87: 204-210, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30554066

RESUMO

Tuberculosis (TB) is one of the world's deadliest diseases resulting from infection by the bacterium, Mycobacterium tuberculosis (M.tb). The L,D-transpeptidase enzymes catalyze the synthesis of 3 → 3 transpeptide linkages which are predominant in the peptidoglycan of the M.tb cell wall. Carbapenems is class of ß-lactams that inactivate L,D-transpeptidases by acylation, although differences in antibiotic side chains modulate drug binding and acylation rates. Herein, we used a two-layered our Own N-layer integrated Molecular Mechanics ONIOM method to investigate the catalytic mechanism of L,D-transpeptidase 5 (LdtMt5) by ß-lactam derivatives. LdtMt5 complexes with six ß-lactams, ZINC03788344 (1), ZINC02462884 (2), ZINC03791246 (3), ZINC03808351 (4), ZINC03784242 (5) and ZINC02475683 (6) were simulated. The QM region (high-level) comprises the ß-lactam, one water molecule and the Cys360 catalytic residue, while the rest of the LdtMt5 residues were treated with AMBER force field. The activation energies (ΔG#) were calculated with B3LYP, M06-2X and ωB97X density functionals with 6-311++G(2d, 2p) basis set. The ΔG# for the acylation of LdtMt5 by the selected ß-lactams were obtained as 13.67, 20.90, 22.88, 24.29, 27.86 and 28.26 kcal mol-1respectively. Several of the compounds showed an improved ΔG# when compared to the previously calculated energies for imipenem and meropenem for the acylation step for LdtMt5. This model provides further validation of the catalytic inhibition mechanism of LDTs with atomistic detail.


Assuntos
Peptidil Transferases/química , Relação Quantitativa Estrutura-Atividade , beta-Lactamas/química , Antibacterianos/química , Antibacterianos/farmacologia , Proteínas de Bactérias/química , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Peptidil Transferases/antagonistas & inibidores , beta-Lactamas/farmacologia
16.
Tuberculosis (Edinb) ; 113: 222-230, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30514506

RESUMO

Mycobacterium tuberculosis is the causative agent of Tuberculosis. Formation of 3 → 3 crosslinks in the peptidoglycan layer of M. tuberculosis is catalyzed by l,d-transpeptidases. These enzymes can confer resistance against classical ß-lactams that inhibit enzymes that generate 4 → 3 peptidoglycan crosslinks. The focus of this study is to investigate the catalytic role of water molecules in the acylation mechanism of the ß-lactam ring within two models; 4- and 6-membered ring systems using two-layered our Own N-layer integrated Molecular Mechanics ONIOM (B3LYP/6-311++G(2d,2p): AMBER) model. The obtained thermochemical parameters revealed that the 6-membered ring model best describes the inhibition mechanism of acylation which indicates the role of water in the preference of 6-membered ring reaction pathway. This finding is in accordance with experimental data for the rate-limiting step of cysteine protease with the same class of inhibitor and binding affinity for both inhibitors. As expected, the ΔG# results also reveal that the 6-membered ring reaction pathway is the most favourable. The electrostatic potential (ESP) and the natural bond orbital analysis (NBO) showed stronger interactions in 6-membered ring transition state (TS-6) mechanism involving water in the active site of the enzyme. This study could be helpful in the development of novel antibiotics against l,d-transpeptidase.


Assuntos
Proteínas de Bactérias/metabolismo , Modelos Moleculares , Mycobacterium tuberculosis/enzimologia , Peptidoglicano/metabolismo , Peptidil Transferases/metabolismo , Água/metabolismo , Acilação , Antibacterianos/química , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Sítios de Ligação , Catálise , Domínio Catalítico , Imipenem/química , Imipenem/metabolismo , Imipenem/farmacologia , Cinética , Meropeném/química , Meropeném/metabolismo , Meropeném/farmacologia , Estrutura Molecular , Mycobacterium tuberculosis/efeitos dos fármacos , Peptidil Transferases/antagonistas & inibidores , Peptidil Transferases/química , Ligação Proteica
17.
Chem Biol Drug Des ; 92(5): 1899-1913, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30003668

RESUMO

HIV-1 protease (HIV PR) is considered as one of the most attractive targets for the treatment of HIV and the impact of flap dynamics of HIV PR on the binding affinities of protease inhibitors (PIs) is a crucial ongoing research field. Recently, our research group evaluated the binding affinities of different FDA approved PIs against the South African HIV-1 subtype C (C-SA) protease (PR). The CSA-HIV PR displayed weaker binding affinity for most of the clinical PIs compared to HIV-1 B subtype for West and Central Europe, the Americas. In the current work, the flap dynamics of four different systems of HIV-1 C-SA PR complexed to FDA approved second generation PIs and its impact on binding was explored over the molecular dynamic trajectories. It was observed that the interactions of the selected drugs with the binding site residues of the protease may not be the major contributor for affinity towards PIs. Various post-MD analyses were performed, also entropic contributions, solvation free energies and hydrophobic core formation interactions were studied to assess how the flap dynamics of C-SA PR which is affected by such factors. From these contributions, large van der Waals interactions and low solvation free energies were found to be major factors for the higher activity of ATV against C-SA HIV PR. Furthermore, a comparatively stable hydrophobic core may be responsible for higher stability of the PR flaps of the ATV complex. The outcome of this study provides significant guidance to how the flap dynamics of C-SA PR is affected by various factors as a result of the binding affinity of various protease inhibitors. It will also assist with the design of potent inhibitors against C-SA HIV PR that apart from binding in the active site of PR can interacts with the flaps to prevent opening of the flaps resulting in inactivation of the protease.


Assuntos
Inibidores da Protease de HIV/química , Protease de HIV/química , HIV-1/enzimologia , Simulação de Dinâmica Molecular , Sítios de Ligação , Domínio Catalítico , Genótipo , Protease de HIV/metabolismo , Inibidores da Protease de HIV/metabolismo , HIV-1/genética , Humanos , Ligação de Hidrogênio , Análise de Componente Principal , América do Sul , Termodinâmica
18.
Molecules ; 23(7)2018 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-29996491

RESUMO

In the last 30 years, C⁻C cross coupling reactions have become a reliable technique in organic synthesis due their versatility and efficiency. While drawbacks have been experienced on an industrial scale with the use of homogenous systems, many attempts have been made to facilitate a heterogeneous renaissance. Thus, this review gives an overview of the current status of the use of heterogeneous catalysts particularly in Suzuki and Heck reactions. Most recent developments focus on palladium immobilised or supported on various classes of supports, thus this review highlights and discuss contributions of the last decade.


Assuntos
Técnicas de Química Sintética/métodos , Paládio/química , Catálise , Magnetismo , Nanopartículas/química , Óxidos/química
19.
J Comput Aided Mol Des ; 32(6): 687-701, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29845435

RESUMO

Tuberculosis remains a dreadful disease that has claimed many human lives worldwide and elimination of the causative agent Mycobacterium tuberculosis also remains elusive. Multidrug-resistant TB is rapidly increasing worldwide; therefore, there is an urgent need for improving the current antibiotics and novel drug targets to successfully curb the TB burden. L,D-Transpeptidase 2 is an essential protein in Mtb that is responsible for virulence and growth during the chronic stage of the disease. Both D,D- and L,D-transpeptidases are inhibited concurrently to eradicate the bacterium. It was recently discovered that classic penicillins only inhibit D,D-transpeptidases, while L,D-transpeptidases are blocked by carbapenems. This has contributed to drug resistance and persistence of tuberculosis. Herein, a hybrid two-layered ONIOM (B3LYP/6-31G+(d): AMBER) model was used to extensively investigate the binding interactions of LdtMt2 complexed with four carbapenems (biapenem, imipenem, meropenem, and tebipenem) to ascertain molecular insight of the drug-enzyme complexation event. In the studied complexes, the carbapenems together with catalytic triad active site residues of LdtMt2 (His187, Ser188 and Cys205) were treated at with QM [B3LYP/6-31+G(d)], while the remaining part of the complexes were treated at MM level (AMBER force field). The resulting Gibbs free energy (ΔG), enthalpy (ΔH) and entropy (ΔS) for all complexes showed that the carbapenems exhibit reasonable binding interactions towards LdtMt2. Increasing the number of amino acid residues that form hydrogen bond interactions in the QM layer showed significant impact in binding interaction energy differences and the stabilities of the carbapenems inside the active pocket of LdtMt2. The theoretical binding free energies obtained in this study reflect the same trend of the experimental  observations. The electrostatic, hydrogen bonding and Van der Waals interactions between the carbapenems and LdtMt2 were also assessed. To further examine the nature of intermolecular interactions for carbapenem-LdtMt2 complexes, AIM and NBO analysis were performed for the QM region (carbapenems and the active residues of LdtMt2) of the complexes. These analyses revealed that the hydrogen bond interactions and charge transfer from the bonding to anti-bonding orbitals between catalytic residues of the enzyme and selected ligands enhances the binding and stability of carbapenem-LdtMt2 complexes. The two-layered ONIOM (B3LYP/6-31+G(d): Amber) model was used to evaluate the efficacy of FDA approved carbapenems antibiotics towards LdtMt2.


Assuntos
Antibacterianos/química , Antituberculosos/química , Proteínas de Bactérias/química , Carbapenêmicos/química , Mycobacterium tuberculosis/enzimologia , Peptidil Transferases/química , Domínio Catalítico , Ligação de Hidrogênio , Peptidil Transferases/antagonistas & inibidores , Ligação Proteica , Conformação Proteica , Teoria Quântica , Estereoisomerismo , Termodinâmica
20.
J Comput Aided Mol Des ; 32(3): 459-471, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29397520

RESUMO

The aspartate protease of the human immune deficiency type-1 virus (HIV-1) has become a crucial antiviral target in which many useful antiretroviral inhibitors have been developed. However, it seems the emergence of new HIV-1 PR mutations enhances drug resistance, hence, the available FDA approved drugs show less activity towards the protease. A mutation and insertion designated L38L↑N↑L PR was recently reported from subtype of C-SA HIV-1. An integrated two-layered ONIOM (QM:MM) method was employed in this study to examine the binding affinities of the nine HIV PR inhibitors against this mutant. The computed binding free energies as well as experimental data revealed a reduced inhibitory activity towards the L38L↑N↑L PR in comparison with subtype C-SA HIV-1 PR. This observation suggests that the insertion and mutations significantly affect the binding affinities or characteristics of the HIV PIs and/or parent PR. The same trend for the computational binding free energies was observed for eight of the nine inhibitors with respect to the experimental binding free energies. The outcome of this study shows that ONIOM method can be used as a reliable computational approach to rationalize lead compounds against specific targets. The nature of the intermolecular interactions in terms of the host-guest hydrogen bond interactions is discussed using the atoms in molecules (AIM) analysis. Natural bond orbital analysis was also used to determine the extent of charge transfer between the QM region of the L38L↑N↑L PR enzyme and FDA approved drugs. AIM analysis showed that the interaction between the QM region of the L38L↑N↑L PR and FDA approved drugs are electrostatic dominant, the bond stability computed from the NBO analysis supports the results from the AIM application. Future studies will focus on the improvement of the computational model by considering explicit water molecules in the active pocket. We believe that this approach has the potential to provide information that will aid in the design of much improved HIV-1 PR antiviral drugs.


Assuntos
Fármacos Anti-HIV/química , Inibidores da Protease de HIV/química , Protease de HIV/genética , Modelos Moleculares , Aprovação de Drogas , Farmacorresistência Viral , Ligação de Hidrogênio , Mutação , Ligação Proteica , Relação Estrutura-Atividade , Termodinâmica , Estados Unidos , United States Food and Drug Administration , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...