Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Psychiatry ; 15: 1375170, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38600985

RESUMO

Background and methods: The aim of this systematic review was to synthesise research examining the relationship between autism and psychopathy to: (a) better understand the relationship between these two constructs, and (b) describe the clinical manifestation of the two when they co-occur. A systematic search of the literature returned 36 studies. Results: Across all ages, autistic individuals and those with elevated autistic traits but no autistic diagnoses appeared to have increased callous and unemotional traits or psychopathy relative to the general population. Several studies evidenced that although both constructs are associated with empathetic dysfunction, the underlying mechanisms differ. In adults, psychopathy/psychopathic traits were associated with diminished affective empathy and intact cognitive empathy, whilst the opposite was seen autistic adults and those with elevated autistic traits. In children, those with autistic traits or a diagnosis of autism had diminished cognitive empathy, but not affective empathy, while the relationship between callous and unemotional traits/psychopathy and empathy amongst children was less clear. The co-occurrence of autism and psychopathy was seen to lead to additional empathic and cognitive impairment, but findings were mixed making it challenging to clearly describe the clinical manifestation. Conclusion: There remains a paucity of research investigating the interaction between autism and psychopathy and included studies were characterised by multiple measurement difficulties. Attention should be directed toward developing better methods for identifying psychopathic traits in autistic individuals to advance our understanding of the relationship between autism and psychopathy to allow for the development of appropriate care pathways for this population. Systematic review registration: https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=413672, identifier CRD42023413672.

2.
Nature ; 617(7961): 477-482, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37198310

RESUMO

Type Ia supernovae (SNe Ia) are thermonuclear explosions of degenerate white dwarf stars destabilized by mass accretion from a companion star1, but the nature of their progenitors remains poorly understood. A way to discriminate between progenitor systems is through radio observations; a non-degenerate companion star is expected to lose material through winds2 or binary interaction3 before explosion, and the supernova ejecta crashing into this nearby circumstellar material should result in radio synchrotron emission. However, despite extensive efforts, no type Ia supernova (SN Ia) has ever been detected at radio wavelengths, which suggests a clean environment and a companion star that is itself a degenerate white dwarf star4,5. Here we report on the study of SN 2020eyj, a SN Ia showing helium-rich circumstellar material, as demonstrated by its spectral features, infrared emission and, for the first time in a SN Ia to our knowledge, a radio counterpart. On the basis of our modelling, we conclude that the circumstellar material probably originates from a single-degenerate binary system in which a white dwarf accretes material from a helium donor star, an often proposed formation channel for SNe Ia (refs. 6,7). We describe how comprehensive radio follow-up of SN 2020eyj-like SNe Ia can improve the constraints on their progenitor systems.

3.
Nature ; 480(7377): 344-7, 2011 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-22170680

RESUMO

Type Ia supernovae have been used empirically as 'standard candles' to demonstrate the acceleration of the expansion of the Universe even though fundamental details, such as the nature of their progenitor systems and how the stars explode, remain a mystery. There is consensus that a white dwarf star explodes after accreting matter in a binary system, but the secondary body could be anything from a main-sequence star to a red giant, or even another white dwarf. This uncertainty stems from the fact that no recent type Ia supernova has been discovered close enough to Earth to detect the stars before explosion. Here we report early observations of supernova SN 2011fe in the galaxy M101 at a distance from Earth of 6.4 megaparsecs. We find that the exploding star was probably a carbon-oxygen white dwarf, and from the lack of an early shock we conclude that the companion was probably a main-sequence star. Early spectroscopy shows high-velocity oxygen that slows rapidly, on a timescale of hours, and extensive mixing of newly synthesized intermediate-mass elements in the outermost layers of the supernova. A companion paper uses pre-explosion images to rule out luminous red giants and most helium stars as companions to the progenitor.

4.
Nature ; 480(7377): 348-50, 2011 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-22170681

RESUMO

Type Ia supernovae are thought to result from a thermonuclear explosion of an accreting white dwarf in a binary system, but little is known of the precise nature of the companion star and the physical properties of the progenitor system. There are two classes of models: double-degenerate (involving two white dwarfs in a close binary system) and single-degenerate models. In the latter, the primary white dwarf accretes material from a secondary companion until conditions are such that carbon ignites, at a mass of 1.38 times the mass of the Sun. The type Ia supernova SN 2011fe was recently detected in a nearby galaxy. Here we report an analysis of archival images of the location of SN 2011fe. The luminosity of the progenitor system (especially the companion star) is 10-100 times fainter than previous limits on other type Ia supernova progenitor systems, allowing us to rule out luminous red giants and almost all helium stars as the mass-donating companion to the exploding white dwarf.

5.
Science ; 321(5893): 1185-8, 2008 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-18653846

RESUMO

The only supernovae (SNe) to show gamma-ray bursts (GRBs) or early x-ray emission thus far are overenergetic, broad-lined type Ic SNe (hypernovae, HNe). Recently, SN 2008D has shown several unusual features: (i) weak x-ray flash (XRF), (ii) an early, narrow optical peak, (iii) disappearance of the broad lines typical of SN Ic HNe, and (iv) development of helium lines as in SNe Ib. Detailed analysis shows that SN 2008D was not a normal supernova: Its explosion energy (E approximately 6x10(51) erg) and ejected mass [ approximately 7 times the mass of the Sun (M(middle dot in circle))] are intermediate between normal SNe Ibc and HNe. We conclude that SN 2008D was originally a approximately 30 M(middle dot in circle) star. When it collapsed, a black hole formed and a weak, mildly relativistic jet was produced, which caused the XRF. SN 2008D is probably among the weakest explosions that produce relativistic jets. Inner engine activity appears to be present whenever massive stars collapse to black holes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...