Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 21(24)2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33339270

RESUMO

Congenital cataracts are the prime cause for irreversible blindness in children. The global incidence of congenital cataract is 2.2-13.6 per 10,000 births, with the highest prevalence in Asia. Nearly half of the congenital cataracts are of familial nature, with a predominant autosomal dominant pattern of inheritance. Over 38 of the 45 mapped loci for isolated congenital or infantile cataracts have been associated with a mutation in a specific gene. The clinical and genetic heterogeneity of congenital cataracts makes the molecular diagnosis a bit of a complicated task. Hence, whole exome sequencing (WES) was utilized to concurrently screen all known cataract genes and to examine novel candidate factors for a disease-causing mutation in probands from 11 pedigrees affected with familial congenital cataracts. Analysis of the WES data for known cataract genes identified causative mutations in six pedigrees (55%) in PAX6, FYCO1 (two variants), EPHA2, P3H2,TDRD7 and an additional likely causative mutation in a novel gene NCOA6, which represents the first dominant mutation in this gene. This study identifies a novel cataract gene not yet linked to human disease. NCOA6 is a transcriptional coactivator that interacts with nuclear hormone receptors to enhance their transcriptional activator function.


Assuntos
Alelos , Catarata/genética , Coativadores de Receptor Nuclear/genética , Catarata/patologia , Efrina-A2/genética , Feminino , Testes Genéticos , Humanos , Masculino , Proteínas Associadas aos Microtúbulos/genética , Mutação , Fator de Transcrição PAX6/genética , Linhagem , Pró-Colágeno-Prolina Dioxigenase/genética , Receptor EphA2 , Ribonucleoproteínas/genética , Sequenciamento Completo do Genoma
2.
Hum Mol Genet ; 29(1): 132-148, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31696227

RESUMO

Optic nerve hypoplasia (ONH) is a congenital optic nerve abnormality caused by underdevelopment of retinal ganglion cells (RGCs). Despite being a rare disease, ONH is the most common optic disk anomaly in ophthalmological practice. So far, mutations in several genes have been identified as causative; however, many cases of ONH remain without a molecular explanation. The early transcription factor atonal basic-helix-loop-helix (bHLH) transcription factor 7 (ATOH7) is expressed in retinal progenitor cells and has a crucial role in RGC development. Previous studies have identified several mutations in the ATOH7 locus in cases of eye developmental diseases such as non-syndromic congenital retinal non-attachment and persistent hyperplasia of the primary vitreous. Here we present two siblings with a phenotype predominated by bilateral ONH, with additional features of foveal hypoplasia and distinct vascular abnormalities, where whole-exome sequencing identified two compound heterozygous missense mutations affecting a conserved amino acid residue within the bHLH domain of ATOH7 (NM_145178.3:c.175G>A; p.(Ala59Thr) and c.176C>T; p.(Ala59Val)). ATOH7 expression constructs with patient single nucleotide variants were cloned for functional characterization. Protein analyses revealed decreased protein amounts and significantly enhanced degradation in the presence of E47, a putative bHLH dimerization partner. Protein interaction assays revealed decreased heterodimerization and DNA-binding of ATOH7 variants, resulting in total loss of transcriptional activation of luciferase reporter gene expression. These findings strongly support pathogenicity of the two ATOH7 mutations, one of which is novel. Additionally, this report highlights the possible impact of altered ATOH7 dimerization on protein stability and function.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Doenças do Nervo Óptico/congênito , Hipoplasia do Nervo Óptico/metabolismo , Hipoplasia do Nervo Óptico/patologia , Adolescente , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Criança , Feminino , Testes Genéticos , Humanos , Masculino , Pessoa de Meia-Idade , Mutação/genética , Mutação de Sentido Incorreto/genética , Doenças do Nervo Óptico/genética , Doenças do Nervo Óptico/metabolismo , Doenças do Nervo Óptico/patologia , Hipoplasia do Nervo Óptico/genética , Linhagem , Células Ganglionares da Retina/metabolismo
3.
Invest Ophthalmol Vis Sci ; 58(10): 3840-3850, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28763557

RESUMO

Purpose: To define the phenotype of C2orf71 associated retinopathy and to present novel mutations in this gene. Methods: A retrospective multicenter study of patients with retinopathy and identified C2orf71 mutations was performed. Ocular function (visual acuity, visual fields, electroretinogram [ERG] responses); retinal morphology (fundus, optical coherence tomography); and underlying mutations were analyzed. Results: Thirteen patients from 11 families, who were aged 7 to 63 years (mean: 32.1 years) at their first examination with presumed compound heterozygous (6/13 patients) or homozygous (7/13 patients) C2orf71 mutations were identified. Eight of the mutations were novel. Truncation mutations were responsible in all cases. Nyctalopia was observed in less than 50% of patients. Visual acuity ranged from 20/20 to light perception. Severe visual loss was associated with atrophic maculopathy. Full-field ERG responses showed severe progressive cone-rod or rod-cone dysfunction. Typical fundus changes were progressive symmetrical retinopathy with an early mild maculopathy and patchy circular midperipheral RPE atrophy. Normal retinal lamination was preserved despite early disruption of the ellipsoid zone and RPE irregularities. Outer retinal tubulations were associated with better-preserved visual acuity. Conclusions: On the basis of our multicenter analysis, C2orf71 might represent a more frequently mutated gene in autosomal recessive retinitis pigmentosa in some populations. The phenotype analysis over a wide age range showed a variable and progressive retinal degeneration with early onset maculopathy and a better visual potential before the age of 30 years.


Assuntos
Proteínas do Olho/genética , Mutação , Retinose Pigmentar/genética , Adolescente , Adulto , Criança , Eletrorretinografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Retinose Pigmentar/fisiopatologia , Estudos Retrospectivos , Acuidade Visual/fisiologia , Campos Visuais/fisiologia , Adulto Jovem
4.
Europace ; 19(6): 1063-1069, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-27194543

RESUMO

AIMS: To evaluate potential differences in the genetic profile of cases with 'definite', 'borderline', and 'possible' arrhythmogenic right ventricular cardiomyopathy (ARVC) phenotype by 2010 task force criteria using a custom genetic panel after whole-exome analysis. METHODS AND RESULTS: We performed whole-exome sequencing in 14 cases with the clinical diagnosis ARVC using an 'Illumina HighSeq 2000' system. We presented our initial results focused on 96 known cardiomyopathy and channelopathy genes. According to the 2010 task force criteria, 7/14 cases (50%) were classified as 'definite' phenotype, 4/14 (29%) were 'borderline', and 3/14 (21%) were diagnosed with the 'possible' phenotype. Nine out of 14 patients (64%) were males, and all were Caucasians, with an average age at genetic diagnosis of 50 ± 15 years. Among the seven cases with the 'definite' phenotype, six (86%) had a putative desmosomal mutation, while none of the seven patients with a 'possible' or borderline task force classification phenotype hosted putative mutations in desmosomal genes. Four (57%) of them had rare variants in other dilated cardiomyopathy (DCM) genes. CONCLUSIONS: Most of the patients with 'definite' ARVC phenotype by task force 2010 host mutations in desmosomal genes. Weaker ARVC phenotypes host variants/mutations in other DCM genes and result in a disease spectrum, including DCM or phenocopies of ARVC.


Assuntos
Displasia Arritmogênica Ventricular Direita/genética , Análise Mutacional de DNA/métodos , Sequenciamento do Exoma , Sequenciamento de Nucleotídeos em Larga Escala , Mutação , Adulto , Idoso , Displasia Arritmogênica Ventricular Direita/diagnóstico , Feminino , Marcadores Genéticos , Predisposição Genética para Doença , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Valor Preditivo dos Testes , Fatores de Risco , Adulto Jovem
5.
Eur J Hum Genet ; 21(3): 352-6, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22739342

RESUMO

Wagner syndrome (WS) is an autosomal dominant vitreoretinopathy affecting various ocular features and is caused by mutations in the canonical splice sites of the VCAN gene, which encodes the large chondroitin sulfate proteoglycan, versican. We report the identification of novel splice acceptor and donor-site mutations (c.4004-1G>C and c.9265+2T>A) in two large WS families from France and the United Kingdom. To characterize their pathogenic mechanisms we performed qRT-PCR experiments on RNA from patient-derived tissues (venous blood and skin fibroblasts). We also analyzed RNA from the original Swiss family reported by Wagner (who has the previously reported c.9265+1G>A mutation). All three mutations resulted in a quantitative increase of transcript variants lacking exons 7 and/or 8. However, the magnitude of the increase varied between tissues and mutations. We discuss altered balance of VCAN splice variants in combination with reduction in glycosaminoglycan protein modifications as possible pathogenic mechanisms.


Assuntos
Processamento Alternativo , Oftalmopatias/genética , Versicanas/genética , Feminino , Fibroblastos , Humanos , Masculino , Mutação , Linhagem , Síndrome
6.
Invest Ophthalmol Vis Sci ; 51(7): 3354-61, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20181839

RESUMO

PURPOSE. Knowledge of genetic factors predisposing to age-related cataract is very limited. The aim of this study was to identify DNA sequences that either lead to or predispose for this disease. METHODS. The candidate gene SLC16A12, which encodes a solute carrier of the monocarboxylate transporter family, was sequenced in 484 patients with cataract (134 with juvenile cataract, 350 with age-related cataract) and 190 control subjects. Expression studies included luciferase reporter assay and RT-PCR experiments. RESULTS. One patient with age-related cataract showed a novel heterozygous mutation (c.-17A>G) in the 5'untranslated region (5'UTR). This mutation is in cis with the minor G-allele of the single nucleotide polymorphism (SNP) rs3740030 (c.-42T/G), also within the 5'UTR. Using a luciferase reporter assay system, a construct with the patient's haplotype caused a significant upregulation of luciferase activity. In comparison, the SNP G-allele alone promoted less activity, but that amount was still significantly higher than the amount of the common T-allele. Analysis of SLC16A12 transcripts in surrogate tissue demonstrated striking allele-specific differences causing 5'UTR heterogeneity with respect to sequence and quantity. These differences in gene expression were mirrored in an allele-specific predisposition to age-related cataract, as determined in a Swiss population (odds ratio approximately 2.2; confidence intervals, 1.23-4.3). CONCLUSIONS. The monocarboxylate transporter SLC16A12 may contribute to age-related cataract. Sequences within the 5'UTR modulate translational efficiency with pathogenic consequences.


Assuntos
Regiões 5' não Traduzidas/genética , Envelhecimento/fisiologia , Catarata/genética , Transportadores de Ácidos Monocarboxílicos/genética , Mutação/genética , Idoso , Linhagem Celular , Clonagem Molecular , Primers do DNA/química , Feminino , Regulação da Expressão Gênica/fisiologia , Predisposição Genética para Doença , Vetores Genéticos , Humanos , Músculo Liso Vascular , Plasmídeos , Polimorfismo de Nucleotídeo Único/genética , Artéria Radial , Reação em Cadeia da Polimerase Via Transcriptase Reversa
7.
Hum Mutat ; 30(9): 1355-64, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19618372

RESUMO

We improved, evaluated, and used Sanger sequencing for quantification of single nucleotide polymorphism (SNP) variants in transcripts and gDNA samples. This improved assay resulted in highly reproducible relative allele frequencies (e.g., for a heterozygous gDNA 50.0+/-1.4%, and for a missense mutation-bearing transcript 46.9+/-3.7%) with a lower detection limit of 3-9%. It provided excellent accuracy and linear correlation between expected and observed relative allele frequencies. This sequencing assay, which can also be used for the quantification of copy number variations (CNVs), methylations, mosaicisms, and DNA pools, enabled us to analyze transcripts of the FBN1 gene in fibroblasts and blood samples of patients with suspected Marfan syndrome not only qualitatively but also quantitatively. We report a total of 18 novel and 19 known FBN1 sequence variants leading to a premature termination codon (PTC), 26 of which we analyzed by quantitative sequencing both at gDNA and cDNA levels. The relative amounts of PTC-containing FBN1 transcripts in fresh and PAXgene-stabilized blood samples were significantly higher (33.0+/-3.9% to 80.0+/-7.2%) than those detected in affected fibroblasts with inhibition of nonsense-mediated mRNA decay (NMD) (11.0+/-2.1% to 25.0+/-1.8%), whereas in fibroblasts without NMD inhibition no mutant alleles could be detected. These results provide evidence for incomplete NMD in leukocytes and have particular importance for RNA-based analyses not only in FBN1 but also in other genes.


Assuntos
Códon sem Sentido/genética , Variação Genética , Leucócitos/metabolismo , Síndrome de Marfan/genética , Proteínas dos Microfilamentos/genética , Estabilidade de RNA/genética , RNA Mensageiro/metabolismo , Alelos , Sequência de Bases , Códon sem Sentido/metabolismo , Análise Mutacional de DNA , Fibrilina-1 , Fibrilinas , Humanos
8.
Hum Genet ; 122(1): 23-32, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17492313

RESUMO

Mutations in the FBN1 gene are the major cause of Marfan syndrome (MFS), an autosomal dominant connective tissue disorder, which displays variable manifestations in the cardiovascular, ocular, and skeletal systems. Current molecular genetic testing of FBN1 may miss mutations in the promoter region or in other noncoding sequences as well as partial or complete gene deletions and duplications. In this study, we tested for copy number variations by successively applying multiplex ligation-dependent probe amplification (MLPA) and the Affymetrix Human Mapping 500 K Array Set, which contains probes for approximately 500,000 single-nucleotide polymorphisms (SNPs) across the genome. By analyzing genomic DNA of 101 unrelated individuals with MFS or related phenotypes in whom standard genetic testing detected no mutation, we identified FBN1 deletions in two patients with MFS. Our high-resolution approach narrowed down the deletion breakpoints. Subsequent sequencing of the junctional fragments revealed the deletion sizes of 26,887 and 302,580 bp, respectively. Surprisingly, both deletions affect the putative regulatory and promoter region of the FBN1 gene, strongly indicating that they abolish transcription of the deleted allele. This expectation of complete loss of function of one allele, i.e. true haploinsufficiency, was confirmed by transcript analyses. Our findings not only emphasize the importance of screening for large genomic rearrangements in comprehensive genetic testing of FBN1 but, importantly, also extend the molecular etiology of MFS by providing hitherto unreported evidence that true haploinsufficiency is sufficient to cause MFS.


Assuntos
Deleção de Genes , Perda de Heterozigosidade , Síndrome de Marfan/genética , Proteínas dos Microfilamentos/genética , Sequência de Bases , Quebra Cromossômica , Estudos de Coortes , Análise Mutacional de DNA/métodos , Fibrilina-1 , Fibrilinas , Testes Genéticos , Haplótipos , Humanos , Dados de Sequência Molecular , Polimorfismo de Nucleotídeo Único , RNA Mensageiro/análise
9.
Am J Med Genet A ; 143A(11): 1150-8, 2007 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-17480003

RESUMO

Most X-linked diseases show a recessive pattern of inheritance in which female carriers are unaffected. In X-linked retinitis pigmentosa (XLRP), however, both recessive and semi-dominant inheritance patterns have been reported. We identified an Israeli family with semi-dominant XLRP due to a missense mutation (p.G275S) in the RPGR gene. The mutation was previously reported in two Danish families with recessive XLRP. Obligate carriers from the two Danish families had no visual complaints and normal to slightly reduced retinal function, while those from the Israeli family suffered from high myopia, low visual acuity, constricted visual fields, and severely reduced electroretinogram (ERG) amplitudes. The disease-related RPGR haplotype of the Israeli family was found to be different from the one found in the two Danish families, indicating that the mutation arose twice independently on different X-chromosome backgrounds. A series of genetic analyses excluded skewed X-inactivation pattern, chromosomal abnormalities, distorted RPGR expression level, and mutations in candidate genes as the cause for the differences in disease severity of female carriers. To the best of our knowledge, this is the first detailed analysis of an identical mutation causing either a recessive or a semi-dominant X-linked pattern of disease in different families. Our results indicate that an additional gene (or genes), linked to RPGR, modulate disease expression in severely affected carriers. These may be related to the high myopia concomitantly found in affected carriers from the Israeli family.


Assuntos
Proteínas do Olho/genética , Genes Dominantes , Genes Recessivos , Doenças Genéticas Ligadas ao Cromossomo X , Mutação de Sentido Incorreto/genética , Linhagem , Retinose Pigmentar/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Cromossomos Humanos X/genética , Análise Mutacional de DNA , Feminino , Angiofluoresceinografia , Fundo de Olho , Humanos , Masculino , Pessoa de Meia-Idade , Retinose Pigmentar/diagnóstico , Inativação do Cromossomo X/genética
10.
Am J Hum Genet ; 79(4): 657-67, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16960802

RESUMO

Mutations in genes encoding either components of the phototransduction cascade or proteins presumably involved in signaling from photoreceptors to adjacent second-order neurons have been shown to cause congenital stationary night blindness (CSNB). Sequence alterations in CACNA1F lead to the incomplete type of CSNB (CSNB2), which can be distinguished by standard electroretinography (ERG). CSNB2 is associated with a reduced rod b-wave, a substantially reduced cone a-wave, and a reduced 30-Hz flicker ERG response. CACNA1F encodes the alpha 1-subunit of an L-type Ca2+ channel (Cav1.4 alpha ), which is specific to photoreceptors and is present at high density in the synaptic terminals. Ten of our patients with CSNB2 showed no mutation in CACNA1F. To identify the disease-causing mutations, we used a candidate-gene approach. CABP4, a member of the calcium-binding protein (CABP) family, is located in photoreceptor synaptic terminals and is directly associated with the C-terminal domain of the Cav1.4 alpha . Mice lacking either Cabp4 or Cav1.4 alpha display a CSNB2-like phenotype. Here, we report for the first time that mutations in CABP4 lead to autosomal recessive CSNB. Our studies revealed homozygous and compound heterozygous mutations in two families. We also show that these mutations reduce the transcript levels to 30%-40% of those in controls. This suggests that the reduced amount of CABP4 is the reason for the signaling defect in these patients.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Genes Recessivos , Mutação , Cegueira Noturna/genética , Adolescente , Adulto , Sequência de Aminoácidos , Canais de Cálcio Tipo L/genética , Proteínas de Ligação ao Cálcio/química , Cromossomos Humanos Par 11 , Eletrorretinografia , Éxons , Feminino , Deleção de Genes , Humanos , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Cegueira Noturna/congênito , Cegueira Noturna/fisiopatologia , Linhagem , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Alinhamento de Sequência , Acuidade Visual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...