Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Funct Plant Biol ; 41(5): 535-546, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32481011

RESUMO

Crop canopy temperature (Tc) is coupled with transpiration, which is a function of soil and atmospheric conditions and plant water status. Thus, Tc has been identified as a real-time, plant-based tool for crop water stress detection. Such plant-based methods theoretically integrate the water status of both the plant and its environment. However, previous studies have highlighted the limitations and difficulty of interpreting the Tc response to plant and soil water stress. This study investigates the links between cotton Tc, established measures of plant water relations and atmospheric vapour pressure deficit (VPDa). Concurrent measures of carbon assimilation (A), stomatal conductance (gs), leaf water potential (Ψl), soil water (fraction of transpirable soil water (FTSW)) and Tc were conducted in surface drip irrigated cotton over two growing seasons. Associations between A, gs, Ψl, FTSW and Tc are presented, which are significantly improved with the inclusion of VPDa. It was concluded that utilising the strong associations between Ψl, VPDa and Tc, an adjustment of 1.8°C for each unit of VPDa should be made to the critical Tc for irrigation. This will improve the precision of irrigation in Tc based irrigation scheduling protocols. Improved accuracy in water stress detection with Tc, and an understanding of the interaction the environment plays in this response, can potentially improve the efficiency of irrigation.

2.
Biotechnol Lett ; 33(4): 821-8, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21188619

RESUMO

Growth, yield, and yield quality of cotton are greatly affected by water-deficit stress. We have identified the genes and associated metabolic pathways involved in the water-deficit stress response in leaf and root. Gene expression profiles were developed for leaf and root tissues subjected to slow-onset water deficit under controlled, glasshouse conditions. The water-deficit stress was characterized by leaf water potential of -23.1 bars for stressed tissue compared to -8.7 bars for fully-irrigated control plants and a corresponding decrease in net carbon assimilation to approximately 60% of the rates seen in the irrigated controls (30.3 ± 4.7 µmol CO(2) m(-2) s(-1) compared to 17.8 ± 5.9 µmol CO(2) m(-2) s(-1)). Profiling experiments revealed 2,106 stress-responsive transcripts, 879 classified as stress-induced, 1,163 stress-repressed, and 64 showed reciprocal expression patterns in root and leaf. The majority of stress-responsive transcripts had tissue-specific expression patterns and only 173 genes showed similar patterns of stress responsive expression in both tissues. A variety of putative metabolic and regulatory pathways were identified using MapMan software and the potential targets for candidate gene selection and ectopic expression to alter these pathways and responses are discussed.


Assuntos
Secas , Perfilação da Expressão Gênica , Gossypium/metabolismo , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Reação em Cadeia da Polimerase Via Transcriptase Reversa
3.
Planta ; 222(2): 346-54, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15824906

RESUMO

Transgenic cotton (Gossypium hirsutum L.) lines expressing the tobacco glutathione S-transferase (GST) Nt107 were evaluated for tolerance to chilling, salinity, and herbicides, antioxidant enzyme activity, antioxidant compound levels, and lipid peroxidation. Although transgenic seedlings exhibited ten-fold and five-fold higher GST activity under normal and salt-stress conditions, respectively, germinating seedlings did not show improved tolerance to salinity, chilling conditions, or herbicides. Glutathione peroxidase (GPX) activity in transgenic seedlings was 30% to 60% higher under normal conditions, but was not different than GPX activity in wild-type seedlings under salt-stress conditions. Glutathione reductase, superoxide dismutase, ascorbate peroxidase, and monodehydroascorbate reductase activities were not increased in transgenic seedlings under salt-stress conditions, while dehydroascorbate reductase activity was decreased in transgenic seedlings under salt-stress conditions. Transgenic seedlings had 50% more oxidized glutathione when exposed to salt stress. Ascorbate levels were not increased in transgenic seedlings under salt-stress conditions. Malondialdehyde content in transgenic seedlings was nearly double that of wild-type seedlings under normal conditions and did not increase under salt-stress conditions. These results show that expression of Nt107 in cotton does not provide adequate protection against oxidative stress and suggests that the endogenous antioxidant system in cotton may be disrupted by the expression of the tobacco GST.


Assuntos
Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Gossypium/genética , Gossypium/fisiologia , Nicotiana/enzimologia , Plântula/genética , Plântula/fisiologia , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Temperatura Baixa , Glutationa Peroxidase/metabolismo , Glutationa Redutase/metabolismo , Gossypium/efeitos dos fármacos , Gossypium/enzimologia , Herbicidas/farmacologia , Peroxidação de Lipídeos , Estresse Oxidativo/efeitos dos fármacos , Plantas Geneticamente Modificadas , Sais/farmacologia , Plântula/efeitos dos fármacos , Plântula/enzimologia , Nicotiana/genética
4.
Physiol Plant ; 120(2): 187-195, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15032852

RESUMO

Environmental temperature is a critical factor in the lives of almost all organisms. Plants experience periods of thermal stress related to seasonal patterns of temperature and periodic water deficits. Within the range of non-lethal temperatures, there are a number of thermal effects on metabolism that are a result of the thermal dependence of enzymes. The thermal dependence of enzyme kinetic parameters was used to predict that the efficacy of the herbicide pyrithiobac on Palmer amaranth would be reduced at temperatures outside a 20-34 degrees C thermal application range. This prediction is validated in a controlled environment study described in this paper. Palmer amaranth was grown for 16 days in growth chambers with 34/18 degrees C day/night temperature regime. Pyrithiobac was applied to plants at 18, 27 or 40 degrees C. After 1 h at the application temperatures the plants were returned to the 34/18 degrees C regime for 14 days and post-application biomass accumulation (efficacy) was determined. Dry weight accumulation, as a percentage of untreated controls, was 25, 2.5 and 70% for 18, 27 and 40 degrees C application temperatures. Pyrithiobac efficacy was highest for the application within the thermal application range and significantly reduced at temperatures above and below. The validation of the earlier prediction suggests that temperature-related kinetic limitations on herbicide efficacy may also occur in plants with bioengineered herbicide resistance based on herbicide metabolism. The theoretical aspects of such thermal limitations on herbicide resistance mechanisms are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...