Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; : e2405284, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39285650

RESUMO

The enhancement of the photovoltaic performance upon the aging process at particular environment is often observed in perovskite solar cells (PSCs), particularly for the devices with 2,2',7,7'-tetrakis(N,N-di(4-methoxyphenyl)amino)-9,9'-spirobifluorene (spiro-OMeTAD) as hole transporting material (HTM). In this work, for the first time the effect of aging the typical n-i-p PSCs employing nickel phthalocyanine (coded as Bis-PF-Ni) solely as dopant-free HTM is investigated and as an additive in spiro-OMeTAD solution. This study reveals that the prolong aging of these devices at dry air condition (RH = 2%, 25 °C) is beneficial for the improvement of their performances. Various bulk and surface characterization techniques are utilized to understand the factors behind the spontaneous efficiency enhancement of the devices after storage. As a result, the changes in properties of the Bis-PF-Ni layer are observed and at perovskite/Bis-PF-Ni interface, which ultimately improves the charge transport and reduces non-radiative recombination. In addition, the devices with Bis-PF-Ni HTM reveal enhanced long-term ambient and thermal stability compared to the PSCs based on doped spiro-OMeTAD.

2.
ACS Appl Mater Interfaces ; 15(46): 53351-53361, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37956451

RESUMO

Engineering multidimensional two-dimensional/three-dimensional (2D/3D) perovskite interfaces as light harvesters has recently emerged as a potential strategy to obtain a higher photovoltaic performance in perovskite solar cells (PSCs) with enhanced environmental stability. In this study, we utilized the 1,5-diammonium naphthalene iodide (NDAI) bulky organic spacer for interface modification in 3D perovskites for passivating the anionic iodide/uncoordinated Pb2+ vacancies as well as facilitating charge carrier transfer by improving the energy band alignment at the perovskite/HTL interface. Consequently, the NDAI-treated 2D/3D PSCs showed an enhanced open-circuit voltage and fill factor with a remarkable power conversion efficiency (PCE) of 21.48%. In addition, 2D/3D perovskite devices without encapsulation exhibit a 77% retention of their initial output after 1000 h of aging under 50 ± 5% relative humidity. Furthermore, even after 200 h of storage in 85 °C thermal stress, the devices maintain 60% of their initial PCE. The defect passivation and interface modification mechanism were studied in detail by UV vis absorption, photoluminescence spectroscopy, atomic force microscopy (AFM), scanning electron microscopy (SEM), Fourier transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), solid-state NMR, space-charge-limited current (SCLC) mobility measurement, and impedance spectroscopy. This study provides a promising path for perovskite surface modification in slowing their degradation against external stimuli, providing a future direction for increasing the perovskite device efficiency and durability.

3.
ACS Omega ; 6(2): 1030-1042, 2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33490762

RESUMO

The growth of high-quality single-crystal (SC) perovskite films is a great strategy for the fabrication of defect-free perovskite solar cells (PSCs) with photovoltaic parameters close to the theoretical limit, which resulted in high efficiency and superior stability of the device. Plenty of growth methods for perovskite SCs are available to achieve a maximum power conversion efficiency (PCE) surpassing 21% for SC-based PSCs. However, there is still a lot of room to further push the efficiency by considering new crystal growth techniques, interface engineering, passivation approaches, and additive engineering. In this review, we summarize the recent progress in the growth of SC-based perovskite films for the fabrication of high-efficiency and stable PSCs. We describe the impact of SC growth of perovskite films and their quality on the device performance and stability, compared with the commonly used polycrystalline perovskite films. In the last section, the challenges and potential of SCs in PSCs are also covered for future development.

4.
Phys Chem Chem Phys ; 22(20): 11467-11473, 2020 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-32391544

RESUMO

Ion migration plays a significant role in the overall stability and power conversion efficiency of perovskite solar cells (PSCs). This process was found to be influenced by the compositional engineering of the A-site cation in the perovskite crystal structure. However, the effect of partial A-site cation substitution in a methylammonium lead iodide (MAPbI3) perovskite on the ion migration process and its activation energy is not fully understood. Here we study the effect of a guanidinium (GUA) cation on the ion transport dynamics in the single crystalline GUAxMA1-xPbI3 perovskite composition using temperature-dependent electrochemical impedance spectroscopy (EIS). We find that the small substitution of MA with GUA decreases the activation energy for iodide ion migration in comparison to pristine MAPbI3. The presence of a large GUA cation in the 3D perovskite structure induces lattice enlargement, which perturbs the atomic interactions within the perovskite lattice. Consequently, the GUAxMA1-xPbI3 crystal exhibits a higher degree of hysteresis during current-voltage (J-V) measurements than the single-crystalline MAPbI3 counterpart. Our results provide the fundamental understanding of hysteresis, which is commonly observed in GUA-based PSCs and a general protocol for in-depth electrical characterization of perovskite single crystals.

5.
Molecules ; 25(10)2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32422874

RESUMO

The last decade has witnessed the impressive progress of perovskite solar cells (PSCs), with power conversion efficiency exceeding 25%. Nevertheless, the unsatisfactory device stability and current-voltage hysteresis normally observed with most PSCs under operational conditions are bottlenecks that hamper their further commercialization. Understanding the electrical characteristics of the device during the aging process is important for the design and development of effective strategies for the fabrication of stable PSCs. Herein, electrochemical impedance spectroscopical (IS) analyses are used to study the time-dependent electrical characteristics of PSC. We demonstrate that both the dark and light ideality factors are sensitive to aging time, indicating the dominant existence of trap-assisted recombination in the investigated device. By analyzing the capacitance versus frequency responses, we show that the low-frequency capacitance increases with increasing aging time due to the accumulation of charges or ions at the interfaces. These results are correlated with the observed hysteresis during the current-voltage measurement and provide an in-depth understanding of the degradation mechanism of PSCs with aging time.


Assuntos
Compostos de Cálcio/química , Fontes de Energia Elétrica , Óxidos/química , Energia Solar , Titânio/química , Espectroscopia Dielétrica , Eletricidade , Íons , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA