Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Allergy Asthma Proc ; 41(4): 290-295, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32605699

RESUMO

Background: The booklouse, Liposcelis bostrychophila, is a potent environmental allergen clinically associated with rhinoconjunctivitis and asthma. Despite its known infestation of grain products, anaphylaxis from ingestion of this organism has, to our knowledge, not been previously reported. We present the case of a 44-year-old woman who developed anaphylaxis to ingested oats and rice shown to be contaminated with L. bostrychophila. Objective: The objective was to isolate a distinct antigen from L. bostrychophila implicated in a case of unexplained anaphylaxis. Methods: In vitro studies were obtained for relevant ingested materials and aeroallergens. Skin-prick testing (SPT) was performed with standard extracts, contaminated oats, fresh oats, and crushed L. bostrychophila. Western blots were conducted using subject and control serum to detect specific immunoglobulin E (IgE) against the grains and L. bostrychophila extract. Competitive inhibition immunoblotting was used to assess specificity of IgE binding. Results: In vitro studies and SPT were notable for positive responses to dust mite and flour contaminated by L. bostrychophila, along with contaminated oats. Testing results for fresh oat and rice were negative. Immunoblots that used the subject's serum revealed a strongly positive band in the contaminated oat and rice extracts at 24 kD, whereas dust-mite extract yielded a single 14-kD band. Isolated L. bostrychophila extract also yielded a 24-kD band. Competitive inhibition experiments demonstrated that the 24-kD band in the contaminated oat extract was immunologically distinct from the 14-kD dust-mite band. Conclusion: Our case highlights the importance of considering L. bostrychophila as a potential culprit for unexplained anaphylaxis due to ingested grain products. Given the ubiquitous presence of this insect, we suspect that this may be a more common problem than previously recognized.


Assuntos
Anafilaxia/induzido quimicamente , Contaminação de Alimentos , Proteínas de Insetos/efeitos adversos , Adulto , Animais , Avena , Feminino , Humanos , Immunoblotting , Imunoglobulina E , Insetos , Oryza , Testes Cutâneos
3.
Sci Rep ; 9(1): 5055, 2019 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-30911067

RESUMO

The intra-renal dopamine (DA) system is highly expressed in the proximal tubule and contributes to Na+ and blood pressure homeostasis, as well as to the development of nephropathy. In the kidney, the enzyme DOPA Decarboxylase (DDC) originating from the circulation. We used a twin/family study design, followed by polymorphism association analysis at DDC locus to elucidate heritable influences on renal DA production. Dense single nucleotide polymorphism (SNP) genotyping across the DDC locus on chromosome 7p12 was analyzed by re-sequencing guided by trait-associated genetic markers to discover the responsible genetic variation. We also characterized kinetics of the expressed DDC mutant enzyme. Systematic polymorphism screening across the 15-Exon DDC locus revealed a single coding variant in Exon-14 that was associated with DA excretion and multiple other renal traits indicating pleiotropy. When expressed and characterized in eukaryotic cells, the 462Gln variant displayed lower Vmax (maximal rate of product formation by an enzyme) (21.3 versus 44.9 nmol/min/mg) and lower Km (substrate concentration at which half-maximal product formation is achieved by an enzyme.)(36.2 versus 46.8 µM) than the wild-type (Arg462) allele. The highly heritable DA excretion trait is substantially influenced by a previously uncharacterized common coding variant (Arg462Gln) at the DDC gene that affects multiple renal tubular and glomerular traits, and predicts accelerated functional decline in chronic kidney disease.

4.
Cell Tissue Res ; 376(1): 51-70, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30467710

RESUMO

We have previously shown that the chromogranin A (CgA)-derived peptide catestatin (CST: hCgA352-372) inhibits nicotine-induced secretion of catecholamines from the adrenal medulla and chromaffin cells. In the present study, we seek to determine whether CST regulates dense core (DC) vesicle (DCV) quanta (catecholamine and chromogranin/secretogranin proteins) during acute (0.5-h treatment) or chronic (24-h treatment) cholinergic (nicotine) or peptidergic (PACAP, pituitary adenylyl cyclase activating polypeptide) stimulation of PC12 cells. In acute experiments, we found that both nicotine (60 µM) and PACAP (0.1 µM) decreased intracellular norepinephrine (NE) content and increased 3H-NE secretion, with both effects markedly inhibited by co-treatment with CST (2 µM). In chronic experiments, we found that nicotine and PACAP both reduced DCV and DC diameters and that this effect was likewise prevented by CST. Nicotine or CST alone increased expression of CgA protein and together elicited an additional increase in CgA protein, implying that nicotine and CST utilize separate signaling pathways to activate CgA expression. In contrast, PACAP increased expression of CgB and SgII proteins, with a further potentiation by CST. CST augmented the expression of tyrosine hydroxylase (TH) but did not increase intracellular NE levels, presumably due to its inability to cause post-translational activation of TH through serine phosphorylation. Co-treatment of CST with nicotine or PACAP increased quantal size, plausibly due to increased synthesis of CgA, CgB and SgII by CST. We conclude that CST regulates DCV quanta by acutely inhibiting catecholamine secretion and chronically increasing expression of CgA after nicotinic stimulation and CgB and SgII after PACAPergic stimulation.


Assuntos
Catecolaminas/metabolismo , Cromogranina A/fisiologia , Cromograninas/metabolismo , Nicotina/farmacologia , Fragmentos de Peptídeos/fisiologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Animais , Cromogranina A/farmacologia , Subunidade alfa de Hormônios Glicoproteicos/metabolismo , Humanos , Norepinefrina/metabolismo , Células PC12 , Fragmentos de Peptídeos/farmacologia , Ratos , Proteínas Secretadas pela Vesícula Seminal/metabolismo , Transdução de Sinais/efeitos dos fármacos , Tirosina 3-Mono-Oxigenase/metabolismo
5.
Hum Mol Genet ; 26(1): 233-242, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28011710

RESUMO

Chromogranins are pro-hormone secretory proteins released from neuroendocrine cells, with effects on control of blood pressure. We conducted a genome-wide association study for plasma catestatin, the catecholamine release inhibitory peptide derived from chromogranin A (CHGA), and other CHGA- or chromogranin B (CHGB)-related peptides, in 545 US and 1252 Australian subjects. This identified loci on chromosomes 4q35 and 5q34 affecting catestatin concentration (P = 3.40 × 10-30 for rs4253311 and 1.85 × 10-19 for rs2731672, respectively). Genes in these regions include the proteolytic enzymes kallikrein (KLKB1) and Factor XII (F12). In chromaffin cells, CHGA and KLKB1 proteins co-localized in catecholamine storage granules. In vitro, kallikrein cleaved recombinant human CHGA to catestatin, verified by mass spectrometry. The peptide identified from this digestion (CHGA360-373) selectively inhibited nicotinic cholinergic stimulated catecholamine release from chromaffin cells. A proteolytic cascade involving kallikrein and Factor XII cleaves chromogranins to active compounds both in vivo and in vitro.


Assuntos
Biomarcadores/metabolismo , Catecolaminas/metabolismo , Células Cromafins/metabolismo , Cromogranina A/sangue , Loci Gênicos/genética , Hipertensão/genética , Fragmentos de Peptídeos/sangue , Adolescente , Glândulas Suprarrenais/metabolismo , Adulto , Idoso , Animais , Austrália , Biomarcadores/análise , Células Cultivadas , Fator XII/genética , Fator XII/metabolismo , Feminino , Estudo de Associação Genômica Ampla , Humanos , Hipertensão/sangue , Calicreínas/genética , Calicreínas/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Ratos , Estados Unidos , Adulto Jovem
6.
BMC Med Genet ; 17: 21, 2016 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-26969407

RESUMO

BACKGROUND: Plasma coagulation Factor XIIa (Hageman factor; encoded by F12) and kallikrein (KAL or Fletcher factor; encoded by KLKB1) are proteases of the kallikerin-kinin system involved in converting the inactive circulating prorenin to renin. Renin is a key enzyme in the formation of angiotensin II, which regulates blood pressure, fluid and electrolyte balance and is a biomarker for cardiovascular, metabolic and renal function. The renin-angiotensin system is implicated in extinction learning in posttraumatic stress disorder. METHODS & RESULTS: Active plasma renin was measured from two independent cohorts- civilian twins and siblings, as well as U.S. Marines, for a total of 1,180 subjects. Genotyping these subjects revealed that the carriers of the minor alleles at the two loci- F12 and KLKB1 had a significant association with reduced levels of active plasma renin. Meta-analyses confirmed the association across cohorts. In vitro studies verified digestion of human recombinant pro-renin by kallikrein (KAL) to generate active renin. Subsequently, the active renin was able to digest the synthetic substrate angiotensinogen to angiotensin-I. Examination of mouse juxtaglomerular cell line and mouse kidney sections showed co-localization of KAL with renin. Expression of either REN or KLKB1 was regulated in cell line and rodent models of hypertension in response to oxidative stress, interleukin or arterial blood pressure changes. CONCLUSIONS: The functional variants of KLKB1 (rs3733402) and F12 (rs1801020) disrupted the cascade of enzymatic events, resulting in diminished formation of active renin. Using genetic, cellular and molecular approaches we found that conversion of zymogen prorenin to renin was influenced by these polymorphisms. The study suggests that the variant version of protease factor XIIa due to the amino acid substitution had reduced ability to activate prekallikrein to KAL. As a result KAL has reduced efficacy in converting prorenin to renin and this step of the pathway leading to activation of renin affords a potential therapeutic target.


Assuntos
Fator XIIa/genética , Calicreínas/genética , Polimorfismo de Nucleotídeo Único , Sistema Renina-Angiotensina/genética , Renina/sangue , Adolescente , Adulto , Idoso , Alelos , Angiotensina I/sangue , Angiotensinogênio/sangue , Animais , Pressão Sanguínea , Proteínas de Ciclo Celular , Linhagem Celular , Regulação da Expressão Gênica , Loci Gênicos , Estudo de Associação Genômica Ampla , Técnicas de Genotipagem , Humanos , Hipertensão/genética , Sistema Justaglomerular/citologia , Calicreínas/sangue , Masculino , Camundongos , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Pré-Calicreína/metabolismo , Renina/genética , Serina Endopeptidases/metabolismo , Transferases , Adulto Jovem
7.
Hum Mol Genet ; 23(23): 6375-84, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24986918

RESUMO

Dopamine beta-hydroxylase (DBH) is the biosynthetic enzyme catalyzing formation of norepinephrine. Changes in DBH expression or activity have been implicated in the pathogenesis of cardiovascular and neuropsychiatric disorders. Genetic determination of DBH enzymatic activity and its secretion are only incompletely understood. We began with a genome-wide association search for loci contributing to DBH activity in human plasma. Initially, in a population sample of European ancestry, we identified the proximal DBH promoter as a region harboring three common trait-determining variants (top hit rs1611115, P = 7.2 × 10(-51)). We confirmed their effects on transcription and showed that the three variants each acted additively on gene expression. Results were replicated in a population sample of Native American descent (top hit rs1611115, P = 4.1 × 10(-15)). Jointly, DBH variants accounted for 57% of DBH trait variation. We further identified a genome-wide significant SNP at the LOC338797 locus on chromosome 12 as trans-quantitative trait locus (QTL) (rs4255618, P = 4.62 × 10(-8)). Conditional analyses on DBH identified a third genomic region contributing to DBH variation: a likely cis-QTL adjacent to DBH in SARDH (rs7040170, P = 1.31 × 10(-14)) on chromosome 9q. We conclude that three common SNPs in the DBH promoter act additively to control phenotypic variation in DBH levels, and that two additional novel loci (SARDH and LOC338797) may also contribute to the expression of this catecholamine biosynthetic trait. Identification of DBH variants with strong effects makes it possible to take advantage of Mendelian randomization approaches to test causal effects of this intermediate trait on disease.


Assuntos
Catecolaminas/biossíntese , Dopamina beta-Hidroxilase/genética , Isoformas de Proteínas/genética , Indígena Americano ou Nativo do Alasca , Dopamina beta-Hidroxilase/sangue , Estudo de Associação Genômica Ampla , Humanos , Masculino , Análise da Randomização Mendeliana , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas , Isoformas de Proteínas/sangue , População Branca
8.
J Am Coll Cardiol ; 63(15): 1542-55, 2014 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-24509276

RESUMO

OBJECTIVES: This study coupled 2 strategies-trait extremes and genome-wide pooling-to discover a novel blood pressure (BP) locus that encodes a previously uncharacterized thiamine transporter. BACKGROUND: Hypertension is a heritable trait that remains the most potent and widespread cardiovascular risk factor, although details of its genetic determination are poorly understood. METHODS: Representative genomic deoxyribonucleic acid (DNA) pools were created from male and female subjects in the highest- and lowest-fifth percentiles of BP in a primary care population of >50,000 patients. The peak associated single-nucleotide polymorphisms were typed in individual DNA samples, as well as in twins/siblings phenotyped for cardiovascular and autonomic traits. Biochemical properties of the associated transporter were evaluated in cellular assays. RESULTS: After chip hybridization and calculation of relative allele scores, the peak associations were typed in individual samples, revealing an association between hypertension, systolic BP, and diastolic BP and the previously uncharacterized solute carrier SLC35F3. The BP genetic association at SLC35F3 was validated by meta-analysis in an independent sample from the original source population, as well as the International Consortium for Blood Pressure Genome-Wide Association Studies (across North America and western Europe). Sequence homology to a putative yeast thiamine (vitamin B1) transporter prompted us to express human SLC35F3 in Escherichia coli, which catalyzed [(3)H]-thiamine uptake. SLC35F3 risk-allele homozygotes (T/T) displayed decreased erythrocyte thiamine content on microbiological assay. In twin pairs, the SLC35F3 risk allele predicted heritable cardiovascular traits previously associated with thiamine deficiency, including elevated cardiac stroke volume with decreased vascular resistance, and elevated pressor responses to environmental (cold) stress. Allelic expression imbalance confirmed that cis variation at the human SLC35F3 locus influenced expression of that gene, and the allelic expression imbalance peak coincided with the hypertension peak. CONCLUSIONS: Novel strategies were coupled to position a new hypertension-susceptibility locus, uncovering a previously unsuspected thiamine transporter whose genetic variants predicted several disturbances in cardiac and autonomic function. The results have implications for the pathogenesis and treatment of systemic hypertension.


Assuntos
DNA/genética , Predisposição Genética para Doença , Hipertensão/genética , Proteínas de Membrana Transportadoras/genética , Polimorfismo Genético , Adulto , Alelos , Pressão Sanguínea , Feminino , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Masculino , Proteínas de Membrana Transportadoras/metabolismo , Fenótipo , Tiamina/genética , Tiamina/metabolismo
9.
J Neurochem ; 129(1): 48-59, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24266713

RESUMO

Chromogranin B (CHGB) is the major matrix protein in human catecholamine storage vesicles. CHGB genetic variation alters catecholamine secretion and blood pressure. Here, effective Chgb protein under-expression was achieved by siRNA in PC12 cells, resulting in ~ 48% fewer secretory granules on electron microscopy, diminished capacity for catecholamine uptake (by ~ 79%), and a ~ 73% decline in stores available for nicotinic cholinergic-stimulated secretion. In vivo, loss of Chgb in knockout mice resulted in a ~ 35% decline in chromaffin granule abundance and ~ 44% decline in granule diameter, accompanied by unregulated catecholamine release into plasma. Over-expression of CHGB was achieved by transduction of a CHGB-expressing lentivirus, resulting in ~ 127% elevation in CHGB protein, with ~ 122% greater abundance of secretory granules, but only ~ 14% increased uptake of catecholamines, and no effect on nicotinic-triggered secretion. Human CHGB protein and its proteolytic fragments inhibited nicotinic-stimulated catecholamine release by ~ 72%. One conserved-region CHGB peptide inhibited nicotinic-triggered secretion by up to ~ 41%, with partial blockade of cationic signal transduction. We conclude that bi-directional quantitative derangements in CHGB abundance result in profound changes in vesicular storage and release of catecholamines. When processed and released extra-cellularly, CHGB proteolytic fragments exert a feedback effect to inhibit catecholamine secretion, especially during nicotinic cholinergic stimulation.


Assuntos
Catecolaminas/metabolismo , Grânulos Cromafim/metabolismo , Cromogranina B/fisiologia , Líquido Extracelular/fisiologia , Líquido Intracelular/fisiologia , Sequência de Aminoácidos , Animais , Catecolaminas/genética , Grânulos Cromafim/genética , Humanos , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Ratos
10.
J Neurochem ; 127(6): 750-61, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23786442

RESUMO

The Syrian Cardiomyopathic Hamster (BIO-14.6/53.58 strains) model of cardiac failure, resulting from naturally occurring deletion at the SGCD (delta-sarcoglycan) locus, displays widespread disturbances in catecholamine metabolism. Rare Mendelian myopathy disorders of human SGCD occur, although common naturally occurring SGCD genetic variation has not been evaluated for effects on human norepinephrine (NE) secretion. This study investigated the effect of SGCD genetic variation on control of NE secretion in healthy twin pairs. Genetic associations profiled SNPs across the SGCD locus. Trait heritability (h(2)) and genetic covariance (pleiotropy; shared h(2)) were evaluated. Sympathochromaffin exocytosis in vivo was probed in plasma by both catecholamines and Chromogranin B (CHGB). Plasma NE is substantially heritable (p = 3.19E-16, at 65.2 ± 5.0% of trait variance), sharing significant (p < 0.05) genetic determination with circulating and urinary catecholamines, CHGB, eGFR, and several cardio-metabolic traits. Participants with higher pNE showed significant (p < 0.05) differences in several traits, including increased BP and hypertension risk factors. Peak SGCD variant rs1835919 predicted elevated systemic vascular compliance, without changes in specifically myocardial traits. We used a chimeric-regulated secretory pathway photoprotein (CHGA-EAP) to evaluate the effect of SGCD on the exocytotic pathway in transfected PC12 cells; in transfected cells, expression of SGCD augmented CHGA trafficking into the exocytotic regulated secretory pathway. Thus, our investigation determined human NE secretion to be a highly heritable trait, influenced by common genetic variation within the SGCD locus. Circulating NE aggregates with BP and hypertension risk factors. In addition, coordinate NE and CHGB elevation by rs1835919 implicates exocytosis as the mechanism of release.


Assuntos
Loci Gênicos , Padrões de Herança , Polimorfismo de Nucleotídeo Único , Sarcoglicanas/genética , Sistema Nervoso Simpático/fisiologia , Adolescente , Adulto , Idoso , Animais , Cromogranina A/metabolismo , Exocitose , Pleiotropia Genética , Humanos , Pessoa de Meia-Idade , Norepinefrina/sangue , Norepinefrina/metabolismo , Células PC12 , Transporte Proteico , Locos de Características Quantitativas , Característica Quantitativa Herdável , Ratos , Sarcoglicanas/metabolismo , Adulto Jovem
11.
PLoS One ; 8(12): e82956, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24391727

RESUMO

BACKGROUND: Elevated sympathetic activity is associated with kidney dysfunction. Here we used twin pairs to probe heritability of GFR and its genetic covariance with other traits. METHODS: We evaluated renal and adrenergic phenotypes in twins. GFR was estimated by CKD-EPI algorithm. Heritability and genetic covariance of eGFR and associated risk traits were estimated by variance-components. Meta-analysis probed reproducibility of DBH genetic effects. Effect of DBH genetic variation on renal disease was tested in the NIDDK-AASK cohort. RESULTS: Norepinephrine secretion rose across eGFR tertiles while eGFR fell (p<0.0001). eGFR was heritable, at h(2) = 67.3±4.7% (p = 3.0E-18), as were secretion of norepinephrine (h(2) = 66.5±5.0%, p = 3.2E-16) and dopamine (h(2) = 56.5±5.6%, p = 1.8E-13), and eGFR displayed genetic co-determination (covariance) with norepinephrine (ρG = -0.557±0.088, p = 1.11E-08) as well as dopamine (ρG = -0.223±0.101, p = 2.3E-02). Since dopamine ß-hydroxylase (DBH) catalyzes conversion of dopamine to norepinephrine, we studied functional variation at DBH; DBH promoter haplotypes predicted transcriptional activity (p<0.001), plasma DBH (p<0.0001) and norepinephrine (p = 0.0297) secretion; transcriptional activity was inversely (p<0.0001) associated with basal eGFR. Meta-analysis validated DBH haplotype effects on eGFR across 3 samples. In NIDDK-AASK, we established a role for DBH promoter variation in long-term renal decline rate (GFR slope, p = 0.003). CONCLUSIONS: The heritable GFR trait shares genetic determination with catecholamines, suggesting new pathophysiologic, diagnostic and therapeutic approaches towards disorders of GFR as well as CKD. Adrenergic activity may play a role in progressive renal decline, and genetic variation at DBH may assist in profiling subjects for rational preventive treatment.


Assuntos
Dopamina beta-Hidroxilase/genética , Taxa de Filtração Glomerular/genética , Insuficiência Renal Crônica/genética , Adulto , Negro ou Afro-Americano/genética , Estudos de Coortes , Dopamina/fisiologia , Dopamina beta-Hidroxilase/fisiologia , Feminino , Variação Genética , Taxa de Filtração Glomerular/fisiologia , Haplótipos , Humanos , Masculino , Pessoa de Meia-Idade , Norepinefrina/fisiologia , Regiões Promotoras Genéticas , Insuficiência Renal Crônica/fisiopatologia
12.
Hypertension ; 60(6): 1552-9, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23129699

RESUMO

Although hypertension remains the most potent and widespread cardiovascular risk factor, its pharmacological treatment has achieved only limited success. The chromogranin A-derived fragment catestatin inhibits catecholamine release by acting as an endogenous nicotinic cholinergic antagonist and can rescue hypertension in the setting of chromogranin A-targeted ablation. Here, we undertook novel peptide chemistry to synthesize isomers of catestatin: normal/wild-type as well as a retro-inverso (R-I) version, with not only inversion of chirality (L → D amino acids) but also reversal of sequence (carboxyl → amino). The R-I peptide was entirely resistant to proteolytic digestion and displayed enhanced potency as well as preserved specificity of action toward nicotinic cholinergic events: catecholamine secretion, agonist desensitization, secretory protein transcription, and cationic signal transduction. Structural modeling suggested similar side-chain orientations of the wild-type and R-I isomers, whereas circular dichroism spectroscopy documented inversion of chirality. In vivo, the R-I peptide rescued hypertension in 2 mouse models of the human trait: monogenic chromogranin A-targeted ablation, with prolonged efficacy of the R-I version and a polygenic model, with magnified efficacy of the R-I version. These results may have general implications for generation of metabolically stable mimics of biologically active peptides for cardiovascular pathways. The findings also point the way toward a potential new class of drug therapeutics for an important risk trait and, more generally, open the door to broader applications of the R-I strategy in other pathways involved in cardiovascular biology, with the potential for synthesis of diagnostic and therapeutic probes for both physiology and disease.


Assuntos
Pressão Sanguínea/efeitos dos fármacos , Cromogranina A/química , Cromogranina A/uso terapêutico , Hipertensão/tratamento farmacológico , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/uso terapêutico , Animais , Cromogranina A/farmacologia , Frequência Cardíaca/efeitos dos fármacos , Camundongos , Fragmentos de Peptídeos/farmacologia
13.
J Am Coll Cardiol ; 60(17): 1678-89, 2012 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-23021333

RESUMO

OBJECTIVES: This study sought to understand whether genetic variation at the Neuropeptide Y (NPY) locus governs secretion and stress responses in vivo as well as NPY gene expression in sympathochromaffin cells. BACKGROUND: The NPY is a potent pressor peptide co-released with catecholamines during stress by sympathetic axons. Genome-wide linkage on NPY secretion identified a LOD (logarithm of the odds ratio) peak spanning the NPY locus on chromosome 7p15. METHODS: Our approach began with genomics (linkage and polymorphism determination), extended into NPY genetic control of heritable stress traits in twin pairs, established transcriptional mechanisms in transfected chromaffin cells, and concluded with observations on blood pressure (BP) in the population. RESULTS: Systematic polymorphism tabulation at NPY (by re-sequencing across the locus: promoter, 4 exons, exon/intron borders, and untranslated regions; on 2n = 160 chromosomes of diverse biogeographic ancestries) identified 16 variants, of which 5 were common. We then studied healthy twin/sibling pairs (n = 399 individuals), typing 6 polymorphisms spanning the locus. Haplotype and single nucleotide polymorphism analyses indicated that proximal promoter variant ∇-880Δ (2-bp TG/-, Ins/Del, rs3037354) minor/Δ allele was associated with several heritable (h(2)) stress traits: higher NPY secretion (h(2) = 73 ± 4%) as well as greater BP response to environmental (cold) stress, and higher basal systemic vascular resistance. Association of ∇-880Δ and plasma NPY was replicated in an independent sample of 361 healthy young men, with consistent allelic effects; genetic variation at NPY also associated with plasma NPY in another independent series of 2,212 individuals derived from Australia twin pairs. Effects of allele -880Δ to increase NPY expression were directionally coordinate in vivo (on human traits) and in cells (transfected NPY promoter/luciferase reporter activity). Promoter -880Δ interrupts a novel glucocorticoid response element motif, an effect confirmed in chromaffin cells by site-directed mutagenesis on the transfected promoter, with differential glucocorticoid stimulation of the motif as well as alterations in electrophoretic mobility shifts. The same -880Δ allele also conferred risk for hypertension and accounted for approximately 4.5/approximately 2.1 mm Hg systolic BP/diastolic BP in a population sample from BP extremes. CONCLUSIONS: We conclude that common genetic variation at the NPY locus, especially in proximal promoter ∇-880Δ, disrupts glucocorticoid signaling to influence NPY transcription and secretion, raising systemic vascular resistance and early heritable responses to environmental stress, eventuating in elevated resting BP in the population. The results point to new molecular strategies for probing autonomic control of the human circulation and ultimately susceptibility to and pathogenesis of cardiovascular and neuropsychiatric disease states.


Assuntos
DNA/genética , Regulação da Expressão Gênica , Predisposição Genética para Doença , Hipertensão/genética , Neuropeptídeo Y/genética , Receptores de Glucocorticoides/sangue , Estresse Psicológico/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Alelos , Ensaio de Desvio de Mobilidade Eletroforética , Feminino , Variação Genética , Genótipo , Humanos , Hipertensão/sangue , Masculino , Pessoa de Meia-Idade , Neuropeptídeo Y/biossíntese , Regiões Promotoras Genéticas , Transdução de Sinais , Estresse Psicológico/sangue
14.
J Hypertens ; 30(10): 1961-9, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22871890

RESUMO

BACKGROUND: Cathepsin L (CTSL1) catalyzes the formation of peptides that influence blood pressure (BP). Naturally occurring genetic variation or targeted ablation of the Ctsl1 locus in mice yield cardiovascular pathology. Here, we searched for genetic variation across the human CTSL1 locus and probed its functional effects, especially in the proximal promoter. METHODS AND RESULTS: Systematic polymorphism discovery by re-sequencing across CTSL1 in 81 patients uncovered 38 genetic variants, five of which were relatively common (MAF >5%), creating a single linkage disequilibrium block in multiple biogeographic ancestries. One of these five common variants lay in a functional domain of the gene: promoter C-171A (rs3118869), which disrupts a predicted xenobiotic response element (XRE; match C>A). In transfected CTSL1 promoter/luciferase reporter plasmids, C-171A allele influenced transcription (C>A, P = 3.36E-6), and transcription was also augmented by co-exposure to the aryl hydrocarbon receptor (AHR) complex (AHR:ARNT) in the presence of their ligand dioxin (P = 6.81E-8); allele (C vs. A) and AHR:ARNT/dioxin stimulus interacted to control gene expression (interaction P = 0.033). Endogenous Ctsl1, Ahr, and Arnt transcripts were present in chromaffin cells. Promoter functional C-171A genotype also predicted hypertension (P = 1.0E-3), SBP (P = 4.0E-4), and DBP (P = 3.0E-3), in an additive pattern for diploid genotypes (A/A > C/A > C/C) in 868 patients, and the results were extended by validation analysis into an independent population sample of 986 patients. CONCLUSION: We conclude that common genetic variation in the proximal CTSL1 promoter, especially at position C-171A, is functional in cells, and alters transcription so as to explain the association of CTSL1 with BP in vivo. At the XRE, endogenous genetic variation plus exogenous aryl hydrocarbon stimulation interact to control CTSL1 gene expression. These results unveil a novel control point whereby heredity and environment can intersect to control a complex trait, and point to new transcriptional strategies for intervention into transmitter biosynthesis and its cardiovascular consequences.


Assuntos
Pressão Sanguínea/genética , Catepsina L/genética , Interação Gene-Ambiente , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas , Transcrição Gênica , Xenobióticos/farmacologia , Humanos
15.
BMC Nephrol ; 12: 27, 2011 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-21679467

RESUMO

BACKGROUND: Renal kallikrein (KLK1) synthesis and urinary excretion are reportedly diminished during AKI (acute kidney injury) in animal models, and provision of kallikrein abrogates renal injury in this setting, but data in human AKI is limited. Therefore we first examined KLK1 renal excretion in human AKI, and then probed potential endocrine and epigenetic mechanisms for its alterations. METHODS: KLK1 enzymatic activity excretion was evaluated in urine from patients with established or incipient AKI, versus healthy/non-hospital as well as ICU controls. Endocrine control of KLK1 excretion was then probed by catecholamine and aldosterone measurements in established AKI versus healthy controls. To examine epigenetic control of KLK1 synthesis, we tested blood and urine DNA for changes in promoter CpG methylation of the KLK1 gene, as well as LINE-1 elements, by bisulfite sequencing. RESULTS: Patients with early/incipient AKI displayed a modest reduction of KLK1 excretion, but unexpectedly, established AKI displayed substantially elevated urine KLK1 excretion, ~11-fold higher than healthy controls, and ~3-fold greater than ICU controls. We then probed potential mechanisms of the change. Established AKI patients had lower SBP, higher heart rate, and higher epinephrine excretion than healthy controls, though aldosterone excretion was not different. Promoter KLK1 CpG methylation was higher in blood than urine DNA, while KLK1 methylation in blood DNA was significantly higher in established AKI than healthy controls, though KLK1 methylation in urine tended to be higher in AKI, directionally consistent with earlier/incipient but not later/established changes in KLK1 excretion in AKI. On multivariate ANOVA, AKI displayed coordinate changes in KLK1 excretion and promoter methylation, though directionally opposite to expectation. Control (LINE-1 repetitive element) methylation in blood and urine DNA was similar between AKI and controls. CONCLUSIONS: Unexpectedly, increased KLK1 excretion in AKI patients was found; this increase is likely to be due in part to increments in adrenergic tone during BP depression. Epigenetic changes at KLK1 may also play a role in early changes of KLK1 expression and thus AKI susceptibility or recovery.


Assuntos
Injúria Renal Aguda/enzimologia , Injúria Renal Aguda/genética , Epigênese Genética , Regulação Enzimológica da Expressão Gênica , Calicreínas/genética , Calicreínas/urina , Adulto , Idoso , Sequência de Bases , Biomarcadores/urina , Estudos de Coortes , Epigênese Genética/genética , Feminino , Seguimentos , Humanos , Unidades de Terapia Intensiva , Calicreínas/biossíntese , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Estudos Prospectivos , Regulação para Cima/genética
16.
Cell Tissue Res ; 345(1): 87-102, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21597914

RESUMO

Pituitary adenylyl cyclase activating polypeptide (PACAP) and vasoactive intestinal polypeptide (VIP) augment the biosynthesis of tyrosine hydroxylase (TH). We tested whether secretin belonging to the glucagon/PACAP/VIP superfamily would increase transcription of the tyrosine hydroxylase (Th) gene and modulate catecholamine secretion. Secretin activated transcription of the endogenous Th gene and its transfected promoter (EC(50) ∼4.6 nM) in pheochromocytoma (PC12) cells. This was abolished by pre-treatment with a secretin receptor (SCTR) antagonist and by inhibition of protein kinase A (PKA), mitogen-activated protein kinase, or CREB (cAMP response element-binding protein). In agreement, secretin increased PKA activity and induced phosphorylation of CREB and binding to Th CRE, suggesting secretin signaling to transcription via a PKA-CREB pathway. Secretin stimulated catecholamine secretion (EC(50) ∼3.5 µM) from PC12 cells, but this was inhibited by pre-treatment with VIP-preferring receptor (VPAC1)/PACAP-preferring receptor (PAC1) antagonists. Secretin-evoked secretion occurred without extracellular Ca(2+) and was abolished by intracellular Ca(2+) chelation. Secretin augmented phospholipase C (PLC) activity and increased inositol-1,4,5-triphosphate (IP(3)) levels in PC12 cells; PLC-ß inhibition blocked secretin-induced catecholamine secretion, indicating the participation of intracellular Ca(2+) from a phospholipase pathway in secretion. Like PACAP, secretin evoked long-lasting catecholamine secretion, even after only a transient exposure. Thus, transcription is triggered by nanomolar concentrations of the peptide through SCTR, with signaling along the cAMP-PKA and extracellular-signal-regulated kinase 1/2 pathways and through CREB. By contrast, secretion is triggered only by micromolar concentrations of peptide through PAC1/VPAC receptors and by utilizing a PLC/intracellular Ca(2+) pathway.


Assuntos
Catecolaminas/biossíntese , Catecolaminas/metabolismo , Secretina/farmacologia , Animais , Cálcio/farmacologia , Canais de Cálcio/metabolismo , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , AMP Cíclico/biossíntese , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Ácido Egtázico/análogos & derivados , Ácido Egtázico/farmacologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Humanos , Inositol 1,4,5-Trifosfato/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Células PC12 , Fosforilação/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Ligação Proteica/efeitos dos fármacos , Ratos , Transdução de Sinais/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Ativação Transcricional/efeitos dos fármacos , Ativação Transcricional/genética , Fosfolipases Tipo C/metabolismo , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/metabolismo
17.
Curr Hypertens Rep ; 13(1): 36-45, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21104344

RESUMO

Hypertension is a complex trait with deranged autonomic control of the circulation. The sympathoadrenal system exerts minute-to-minute control over cardiac output and vascular tone. Catecholamine storage vesicles (or chromaffin granules) of the adrenal medulla contain remarkably high concentrations of chromogranins/secretogranins (or "granins"), catecholamines, neuropeptide Y, adenosine triphosphate (ATP), and Ca(2+). Within secretory granules, granins are co-stored with catecholamine neurotransmitters and co-released upon stimulation of the regulated secretory pathway. The principal granin family members, chromogranin A (CHGA), chromogranin B (CHGB), and secretogranin II (SCG2), may have evolved from shared ancestral exons by gene duplication. This article reviews human genetic variation at loci encoding the major granins and probes the effects of such polymorphisms on blood pressure, using twin pairs to probe heritability and individuals with the most extreme blood pressure values in the population to study hypertension.


Assuntos
Catecolaminas/metabolismo , Cromogranina A/genética , Cromogranina B/genética , Hipertensão/genética , Polimorfismo Genético/genética , Secretogranina II/genética , Análise de Variância , Catecolaminas/genética , Distribuição de Qui-Quadrado , Cromograninas/genética , Cromograninas/metabolismo , Intervalos de Confiança , Progressão da Doença , Feminino , Variação Genética , Genótipo , Humanos , Hipertensão/metabolismo , Hipertensão/patologia , Masculino , Razão de Chances , Fatores de Risco
18.
Am J Hypertens ; 24(1): 24-32, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20814407

RESUMO

BACKGROUND: Dopamine ß-hydroxylase (DBH) plays an indispensable role in catecholamine synthesis by converting dopamine into norepinephrine. Here, we characterized a DBH promoter polymorphism (C-2073T; rs1989787; minor allele frequency ~16%) that influences not only gene transcription but also enzyme secretion and blood pressure (BP) in vivo. METHODS: Plasma DBH activity was measured spectrophotometrically. DBH genetic effects on BP were tested in subjects with the most extreme BP values in a large primary care population. Functional effects of promoter variants were studied by site-directed mutagenesis in DBH promoter haplotype/luciferase reporter plasmids transfected into chromaffin cells. Sequence motifs were predicted from position weight matrices, and endogenous transcription factor binding was probed by Chromatin ImmunoPrecipitation (ChIP). RESULTS: The T-allele of common promoter variant C-2073T was contained in a promoter haplotype that associated with plasma DBH activity, a trait also predicted by that variant itself. Promoter haplotypes including C-2073T predicted BP in the population, and the effect was also referable to C-2073T itself. Computationally, C-2073 disrupted a predicted match for transcription factor c-FOS. Site-directed mutagenesis at C-2073T altered not only basal promoter activity, but also transactivation by c-FOS, as well as the chromaffin cell secretory stimuli nicotine or pituitary adenylate cyclase-activating polypeptide (PACAP). Endogenous c-FOS bound to the motif in chromatin. CONCLUSIONS: These results suggest that DBH promoter variant C-2073T is functional in vivo: this promoter variant seems to initiate a cascade of transcriptional and biochemical changes including augmented DBH secretion, eventuating in elevation of basal BP, and hence cardiovascular risk. The observations suggest new strategies for probing the pathophysiology, risk, and treatment of hypertension.


Assuntos
Pressão Sanguínea , Células Cromafins/metabolismo , Dopamina beta-Hidroxilase/genética , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas , Transcrição Gênica , Animais , Dopamina beta-Hidroxilase/sangue , Feminino , Genes fos , Haplótipos , Humanos , Hipertensão/etiologia , Masculino , Células PC12 , Ratos
19.
Am J Hypertens ; 24(2): 225-33, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20864943

RESUMO

BACKGROUND: The Seventh Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure in 2003 created a prehypertension category for persons with blood pressures ranging from systolic blood pressure (SBP) of 120-139 mm Hg or diastolic blood pressure (DBP) from 80 to 89 mm Hg, due to increased risk of cardiovascular disease. METHODS: Our study utilized the University of California-San Diego (UCSD) Twin Hypertension Cohort. We measured comprehensive plasma cholesterol levels and metabolic (glucose, insulin, leptin) and inflammatory markers (interleukin-6 (IL-6), C-reactive protein (CRP), free fatty acids) to determine the differences between normotensive and prehypertensive subjects. Additionally, we determined whether angiotensin II receptor type-1 (AGTR1) polymorphisms, previously associated with hypertension, could predict prehypertension. RESULTS: A total of 455 white subjects were included in the study (mean age 37.1 years). Prehypertensive subjects were older with greater body mass index (BMI) than the normotensives, and after adjusting for sex and age, had greater plasma glucose, insulin, and IL-6. The common AGTR1 A1166C (rs5186) polymorphism in the 3'-UTR region, particularly the presence of the 1166C allele, which fails to downregulate gene expression, predicted greater likelihood of being in the prehypertension group and higher SBP. A lesser-studied polymorphism in intron-2 of AGTR1 (A/G; rs2276736) was associated with plasma high-density lipoprotein (HDL) and apolipoprotein A-1. In a subgroup analysis of nonobese subjects (N = 405), similar associations were noted. CONCLUSION: Prehypertensive subjects already exhibit early pathophysiologic changes putting them at risk of future cardiovascular disease, and AGTR1 may also contribute to this increased risk. Further investigation is needed to confirm these findings and the precise molecular mechanisms of action.


Assuntos
Pressão Sanguínea/genética , Inflamação/genética , Polimorfismo Genético , Pré-Hipertensão/genética , Receptor Tipo 1 de Angiotensina/genética , Adulto , Biomarcadores/sangue , Glicemia/análise , Proteína C-Reativa/análise , California , Colesterol/sangue , Ácidos Graxos não Esterificados/sangue , Feminino , Frequência do Gene , Predisposição Genética para Doença , Humanos , Inflamação/sangue , Inflamação/imunologia , Mediadores da Inflamação/sangue , Insulina/sangue , Interleucina-6/sangue , Análise dos Mínimos Quadrados , Leptina/sangue , Masculino , Pessoa de Meia-Idade , Fenótipo , Pré-Hipertensão/sangue , Pré-Hipertensão/imunologia , Pré-Hipertensão/fisiopatologia , Medição de Risco , Fatores de Risco , Adulto Jovem
20.
Cell Mol Neurobiol ; 30(8): 1395-400, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21061160

RESUMO

Chromogranin A (CHGA) plays a fundamental role in the biogenesis of catecholamine secretory granules. Changes in storage and release of CHGA in clinical and experimental hypertension prompted us to study whether genetic variation at the CHGA locus might contribute to alterations in autonomic function, and hence hypertension and its target organ consequences such as hypertensive renal disease (nephrosclerosis). Systematic polymorphism discovery across the human CHGA locus revealed both common and unusual variants in both the open reading frame and such regulatory regions as the proximal promoter and 30-UTR. In chromaffin cell-transfected CHGA 30-UTR and promoter/luciferase reporter plasmids, the functional consequences of the regulatory/non-coding allelic variants were documented. Variants in both the proximal promoter and the 30-UTR displayed statistical associations with hypertension. Genetic variation in the proximal CHGA promoter predicted glomerular filtration rate in healthy twins. However, for hypertensive renal damage, both end-stage renal disease and rate of progression of earlier disease were best predicted by variants in the 30-UTR. Finally, mechanistic studies were undertaken initiated by the clue that CHGA promoter variation predicted circulating endothelin-1. In cultured endothelial cells, CHGA triggered co-release of not only the vasoconstrictor and pro-fibrotic endothelin-1, but also the pro-coagulant von Willebrand Factor and the pro-angiogenic angiopoietin-2. These findings, coupled with stimulation of endothelin-1 release from glomerular capillary endothelial cells by CHGA, suggest a plausible mechanism whereby genetic variation at the CHGA locus eventuates in alterations in human renal function. These results document the consequences of genetic variation at the CHGA locus for cardiorenal disease and suggest mechanisms whereby such variation achieves functional effects.


Assuntos
Cromogranina A/genética , Predisposição Genética para Doença , Variação Genética , Hipertensão Renal/genética , Humanos , Hipertensão Renal/fisiopatologia , Rim/fisiopatologia , Testes de Função Renal , Nefroesclerose/genética , Nefroesclerose/fisiopatologia , Fenótipo , Caracteres Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...