Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(4)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36850868

RESUMO

The survival rate for sudden cardiac arrest (SCA) is low, and patients with long-term risks of SCA are not adequately alerted. Understanding SCA's characteristics will be key to developing preventive strategies. Many lives could be saved if SCA's early onset could be detected or predicted. Monitoring heart signals continuously is essential for diagnosing sporadic cardiac dysfunction. An electrocardiogram (ECG) can be used to continuously monitor heart function without having to go to the hospital. A zeolite-based dry electrode can provide safe on-skin ECG acquisition while the subject is out-of-hospital and facilitate long-term monitoring. To the ECG signal, a low-power 1 µW read-out circuit was designed and implemented in our prior work. However, having long-term ECG monitoring outside the hospital, i.e., high battery life, and low power consumption while transmission and reception of ECG signal are crucial. This paper proposes a prototype with a 10-bit resolution ADC and nRF24L01 transceivers placed 5 m apart. The system uses the 2.4 GHz worldwide ISM frequency band with GFSK modulation to wirelessly transmit digitized ECG bits at 250 kbps data rate to a physician's computer (or similar) for continuous monitoring of ECG signals; the power consumption is only 11.2 mW and 4.62 mW during transmission and reception, respectively, with a low bit error rate of ≤0.1%. Additionally, a subject-wise cross-validated, three-fold, optimized convolutional neural network (CNN) model using the Physionet-SCA dataset was implemented on NVIDIA Jetson to identify the irregular heartbeats yielding an accuracy of 89% with a run time of 5.31 s. Normal beat classification has an F1 score of 0.94 and a ROC score of 0.886. Thus, this paper integrates the ECG acquisition and processing unit with low-power wireless transmission and CNN model to detect irregular heartbeats.


Assuntos
Parada Cardíaca , Humanos , Morte Súbita Cardíaca , Fontes de Energia Elétrica , Eletrocardiografia , Redes Neurais de Computação
2.
Energy Technol (Weinh) ; 10(3): 2100867, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35860308

RESUMO

Reverse electrowetting-on-dielectric (REWOD)-based energy harvesting has been studied over the last decade as a novel technique of harvesting energy by actuating liquid droplet(s) utilizing applied mechanical modulation. Much prior research in REWOD has relied on planar electrodes, which by its geometry possess a limited surface area. In addition, most of the prior REWOD works have applied a high bias voltage to enhance the output power that compromises the concept of self-powering wearable motion sensors in human health monitoring applications. In order to enhance the REWOD power density resulting from an increased electrode-electrolyte interfacial area, high surface area electrodes are required. Herein, electrical and multiphysics-based modeling approaches of REWOD energy harvester using structured rough surface electrodes are presented. By enhancing the overall available surface area, an increase in the overall capacitance is achieved. COMSOL and MATLAB-based models are also developed, and the empirical results are compared with the models to validate the performance. Root mean square (RMS) power density is calculated using the RMS voltage across an optimal load impedance. For the proposed rough electrode REWOD energy harvester, maximum power density of 3.18 µW cm-2 is achieved at 5 Hz frequency, which is ≈4 times higher than that of the planar electrodes.

3.
Sci Rep ; 12(1): 3782, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35260661

RESUMO

This paper presents a motion-sensing device with the capability of harvesting energy from low-frequency motion activities. Based on the high surface area reverse electrowetting-on-dielectric (REWOD) energy harvesting technique, mechanical modulation of the liquid generates an AC signal, which is modeled analytically and implemented in Matlab and COMSOL. A constant DC voltage is produced by using a rectifier and a DC-DC converter to power up the motion-sensing read-out circuit. A charge amplifier converts the generated charge into a proportional output voltage, which is transmitted wirelessly to a remote receiver. The harvested DC voltage after the rectifier and DC-DC converter is found to be 3.3 V, having a measured power conversion efficiency (PCE) of the rectifier as high as 40.26% at 5 Hz frequency. The energy harvester demonstrates a linear relationship between the frequency of motion and the generated output power, making it highly suitable as a self-powered wearable motion sensor.


Assuntos
Eletricidade , Eletroumectação , Fontes de Energia Elétrica , Desenho de Equipamento , Movimento (Física)
4.
Sci Rep ; 11(1): 5030, 2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33658583

RESUMO

Increasing demand for self-powered wearable sensors has spurred an urgent need to develop energy harvesting systems that can reliably and sufficiently power these devices. Within the last decade, reverse electrowetting-on-dielectric (REWOD)-based mechanical motion energy harvesting has been developed, where an electrolyte is modulated (repeatedly squeezed) between two dissimilar electrodes under an externally applied mechanical force to generate an AC current. In this work, we explored various combinations of electrolyte concentrations, dielectrics, and dielectric thicknesses to generate maximum output power employing REWOD energy harvester. With the objective of implementing a fully self-powered wearable sensor, a "zero applied-bias-voltage" approach was adopted. Three different concentrations of sodium chloride aqueous solutions (NaCl-0.1 M, NaCl-0.5 M, and NaCl-1.0 M) were used as electrolytes. Likewise, electrodes were fabricated with three different dielectric thicknesses (100 nm, 150 nm, and 200 nm) of Al2O3 and SiO2 with an additional layer of CYTOP for surface hydrophobicity. The REWOD energy harvester and its electrode-electrolyte layers were modeled using lumped components that include a resistor, a capacitor, and a current source representing the harvester. Without using any external bias voltage, AC current generation with a power density of 53.3 nW/cm2 was demonstrated at an external excitation frequency of 3 Hz with an optimal external load. The experimental results were analytically verified using the derived theoretical model. Superior performance of the harvester in terms of the figure-of-merit comparing previously reported works is demonstrated. The novelty of this work lies in the combination of an analytical modeling method and experimental validation that together can be used to increase the REWOD harvested power extensively without requiring any external bias voltage.

5.
Sensors (Basel) ; 20(11)2020 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-32481573

RESUMO

Corrosion in underground and submerged steel pipes is a global problem. Coatings serve as an impermeable barrier or a sacrificial element to the transport of corrosive fluids. When this barrier fails, corrosion in the metal initiates. There is a critical need for sensors at the metal/coating interface as an early alert system. Current options utilize metal sensors, leading to accelerating corrosion. In this paper, a non-conductive sensor textile as a viable solution was investigated. For this purpose, non-woven Zinc (II) Oxide-Polyvinylidene Fluoride (ZnO-PVDF) nanocomposite fiber textiles were prepared in a range of weight fractions (1%, 3%, and 5% ZnO) and placed at the coating/steel interface. The properties of ZnO-PVDF nanocomposite meshes were characterized using scanning electron microscopy (SEM), x-ray diffraction (XRD), Fourier transform infrared (FTIR) and d33 meter. Electrochemical impedance spectroscopy (EIS) testing was performed during the immersion of the coated samples to validate the effectiveness of the sensor textile. The results offer a new option for sub-surface corrosion sensing using low cost, easily fabricated sensor textiles.

6.
Sensors (Basel) ; 20(8)2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-32316392

RESUMO

Wearable sensors are a topic of interest in medical healthcare monitoring due to their compact size and portability. However, providing power to the wearable sensors for continuous health monitoring applications is a great challenge. As the batteries are bulky and require frequent charging, the integration of the wireless power transfer (WPT) module into wearable and implantable sensors is a popular alternative. The flexible sensors benefit by being wirelessly powered, as it not only expands an individual's range of motion, but also reduces the overall size and the energy needs. This paper presents the design, modeling, and experimental characterization of flexible square-shaped spiral coils with different scaling factors for WPT systems. The effects of coil scaling factor on inductance, capacitance, resistance, and the quality factor (Q-factor) are modeled, simulated, and experimentally validated for the case of flexible planar coils. The proposed analytical modeling is helpful to estimate the coil parameters without using the time-consuming Finite Element Method (FEM) simulation. The analytical modeling is presented in terms of the scaling factor to find the best-optimized coil dimensions with the maximum Q-factor. This paper also presents the effect of skin contact with the flexible coil in terms of the power transfer efficiency (PTE) to validate the suitability as a wearable sensor. The measurement results at 405 MHz show that when in contact with the skin, the 20 mm× 20 mm receiver (RX) coil achieves a 42% efficiency through the air media for a 10 mm distance between the transmitter (TX) and RX coils.


Assuntos
Dispositivos Eletrônicos Vestíveis , Tecnologia sem Fio , Fontes de Energia Elétrica , Desenho de Equipamento
7.
Sensors (Basel) ; 19(5)2019 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-30832331

RESUMO

Extended-gate field-effect transistor (EGFET) is an electronic interface originally developed as a substitute for an ion-sensitive field-effect transistor (ISFET). Although the literature shows that commercial off-the-shelf components are widely used for biosensor fabrication, studies on electronic interfaces are still scarce (e.g., noise processes, scaling). Therefore, the incorporation of a custom EGFET can lead to biosensors with optimized performance. In this paper, the design and characterization of a transistor association (TA)-based EGFET was investigated. Prototypes were manufactured using a 130 nm standard complementary metal-oxide semiconductor (CMOS) process and compared with devices presented in recent literature. A DC equivalence with the counterpart involving a single equivalent transistor was observed. Experimental results showed a power consumption of 24.99 mW at 1.2 V supply voltage with a minimum die area of 0.685 × 1.2 mm². The higher aspect ratio devices required a proportionally increased die area and power consumption. Conversely, the input-referred noise showed an opposite trend with a minimum of 176.4 nVrms over the 0.1 to 10 Hz frequency band for a higher aspect ratio. EGFET as a pH sensor presented further validation of the design with an average voltage sensitivity of 50.3 mV/pH, a maximum current sensitivity of 15.71 mA1/2/pH, a linearity higher than 99.9%, and the possibility of operating at a lower noise level with a compact design and a low complexity.

8.
Sensors (Basel) ; 18(11)2018 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-30463318

RESUMO

Since the 1970s, a great deal of attention has been paid to the development of semiconductor-based biosensors because of the numerous advantages they offer, including high sensitivity, faster response time, miniaturization, and low-cost manufacturing for quick biospecific analysis with reusable features. Commercial biosensors have become highly desirable in the fields of medicine, food, and environmental monitoring as well as military applications, whereas increasing concerns about food safety and health issues have resulted in the introduction of novel legislative standards for these sensors. Numerous devices have been developed for monitoring biological processes such as nucleic acid hybridization, protein⁻protein interaction, antigen⁻antibody bonds, and substrate⁻enzyme reactions, just to name a few. Since the 1980s, scientific interest moved to the development of semiconductor-based devices, which also include integrated front-end electronics, such as the extended-gate field-effect transistor (EGFET) biosensor, one of the first miniaturized chemical sensors. This work is intended to be a review of the state of the art focused on the development of biosensors and chemosensors based on extended-gate field-effect transistor within the field of bioanalytical applications, which will highlight the most recent research reported in the literature. Moreover, a comparison among the diverse EGFET devices will be presented, giving particular attention to the materials and technologies.


Assuntos
Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/instrumentação , Cálcio/análise , DNA/análise , Técnicas Eletroquímicas , Glucose/análise , Humanos , Miniaturização , Transistores Eletrônicos , Ureia/análise
9.
IEEE Rev Biomed Eng ; 10: 199-212, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28976322

RESUMO

Apnea in the pediatric population is associated with increased morbidity and mortality in a large number of developed as well as developing countries. It is even more prominent in preterm newborn infants and is commonly referred to as apnea of prematurity. Its current diagnosis and therapy involve the use of traditional technologies, which often result in discomfort to the infants due to the use of invasive devices attached to their sensitive skin, especially in overnight clinical sleep analysis (for over a 12- or 24-h period). Emerging trends for the point-of-care diagnosis of this sleep disorder are focused on the design of integrated devices for less complex and noninvasive monitoring. This paper presents a review of the state of the art of clinical technologies and methodologies for sleep apnea detection and their pros and cons, with particular focus on their working principles and relevance to pediatrics. Moreover, an in-depth discussion on emerging future technologies envisioned to be integral parts of the daily home-based applications is included in the paper.


Assuntos
Equipamentos e Provisões , Monitorização Fisiológica/instrumentação , Síndromes da Apneia do Sono/diagnóstico , Síndromes da Apneia do Sono/terapia , Pressão Positiva Contínua nas Vias Aéreas , Humanos , Recém-Nascido , Tecnologia sem Fio
10.
Sensors (Basel) ; 17(4)2017 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-28406447

RESUMO

This paper presents a ferroelectric polymer-based temperature sensor designed for microfluidic devices. The integration of the sensor into a system-on-a-chip platform facilitates quick monitoring of localized temperature of a biological fluid, avoiding errors in the evaluation of thermal evolution of the fluid during analysis. The contact temperature sensor is fabricated by combining a thin pyroelectric film together with an infrared source, which stimulates the active element located on the top of the microfluidic channel. An experimental setup was assembled to validate the analytical model and to characterize the response rate of the device. The evaluation procedure and the operating range of the temperature also make this device suitable for applications where the localized temperature monitoring of biological samples is necessary. Additionally, ease of integration with standard microfluidic devices makes the proposed sensor an attractive option for in situ analysis of biological fluids.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...