Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 269(Pt 1): 131897, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38677671

RESUMO

Chitosan (Ch) is a linear biodegradable natural carbohydrate polymer and the most appealing biopolymer, such as low-cost biodegradability, biocompatibility, hydrophilicity, and non-toxicity. In this case, Ch was utilized to synthesize AgCoFe2O4@Ch/Activated Carbon (AC) by the modified microwave-assisted co-precipitation method. The physical and chemical structure of magnetic nanocomposites was analyzed and characterized by Field Emission Scanning Electron Microscope (FESEM), Transmission electron microscopy (TEM), X-ray diffraction (XRD), Energy Dispersive Spectroscopy (EDS), Diffuse Reflection Spectroscopy (DRS), Value stream mapping (VSM), Fourier transform spectroscopy (FTIR) and BET. The effects of various parameters on the removal of dye (Acid Red18), including catalyst dose, dye concentration, pH, and time were studied. Results showed that the highest removal efficiencies were 96.68 % and 84 % for the synthetic sample and actual wastewater, respectively, in optimal conditions (pH: 3, the initial dye concentration: 10 mgL-1, the catalyst dose: 0.14 gL-1, time: 50 min). Mineralization, according to the COD analysis, was 89.56 %. Photocatalytic degradation kinetics of Acid Red 18 followed pseudo-first order and Langmuir-Hinshelwood with constants of kc = 0.12 mg L-1 min-1 and KL-H = 0.115 Lmg-1. Synthesized photocatalytic AgCoFe2O4@Ch/AC showed high stability and after five recycling cycles was able to remove the pollutant with an efficiency of 85.6 %. So, the synthesized heterogenous magnetic nanocatalyst AgCoFe2O4@Ch/AC was easily recycled from aqueous solutions and it can be used in the removal of dyes from industries with high efficiency.


Assuntos
Poluentes Químicos da Água , Catálise , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Nanocompostos/química , Quitosana/química , Purificação da Água/métodos , Compostos Azo/química , Compostos Azo/isolamento & purificação , Reciclagem/métodos , Concentração de Íons de Hidrogênio , Águas Residuárias/química , Fotólise , Nanopartículas de Magnetita/química , Cinética , Compostos Férricos/química , Carbono/química
2.
Environ Res ; 246: 118128, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38191037

RESUMO

In this investigation, a magnetic nanobiocomposite, denoted as CoFe2O4/Activated Carbon integrated with Chitosan (CoFe2O4/AC@Ch), was synthesized based on a microwave-assisted for the efficacious adsorption of P-nitroaniline (PNA). The physicochemical properties of the said nano biocomposite were thoroughly characterized using a suite of analytical methodologies, namely FESEM/EDS, BET, FTIR, XRD, and VSM. The results confirm the successful synthesis of the nanobiocomposite, with its point of zero charge (pHZPC) determined to be 6.4. Adsorptive performance towards PNA was systematically examined over a spectrum of conditions, encompassing variations in PNA concentration (spanning 10-40 mg/L), adsorbent concentration (10-200 mg/L), contact periods (2.5-22.5 min), and solution pH (3-11). Upon optimization, the conditions converged to an adsorbent concentration of 200 mg/L, pH 5, PNA concentration of 10 mg/L, and a contact duration of 22.5 min, under which an impressive PNA adsorption efficacy of 98.6% was attained. Kinetic and isotherm analyses insinuated the adsorption mechanism to adhere predominantly to the pseudo-second-order kinetic and Langmuir isotherm models. The magnetic nanocomposite was recovered and used in 4 cycles, and the absorption rate reached 86%, which shows the good stability of the magnetic nanocomposite in wastewater treatment. Conclusively, these empirical outcomes underscore the viability of the formulated magnetic nanobiocomposite as a potent, recyclable adsorbent for the proficient extraction of PNA from aqueous matrices.


Assuntos
Poluentes Químicos da Água , Adsorção , Poluentes Químicos da Água/análise , Compostos de Anilina , Cinética , Fenômenos Magnéticos , Concentração de Íons de Hidrogênio
3.
J Environ Health Sci Eng ; 19(2): 1299-1311, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34900267

RESUMO

PURPOSE: In this study MgAl- layered double hydroxides (MgAl-LDH) nanoparticles were prepared by a simple and fast co-precipitation method and used as a catalyst in the ozonation process to degrade diazinon from aqueous solutions. METHODS: The structure of the synthesized MgAl-LDH was investigated by X-ray diffraction pattern (XRD) and field emission scanning electron microscope-energy dispersive spectroscopy (FESEM-EDX). The response surface methodology (RSM) was used to investigate the effects of different parameters including of reaction time, initial diazinon concentration, pH, and LDH dose on the removal of diazinon by MgAl-LDH catalytic ozonation process. Central Composite Design (CCD) was employed for the optimization and modeling of the process. Dispersive liquid-liquid microextraction (DLLME) method was used to extract diazinon from aqueous samples. The GC-Mass analysis was performed to determine intermediate compounds during diazinon degradation reactions. To evaluate the process performance, TOC and COD removal were measured under optimum conditions. RESULTS: The highest removal efficiency of 92% was observed in optimum conditions as follow; initial diazinon concentration: 120 mg/L, pH: 8.25, LDH dose: 750 mg/L, and reaction time: 70 min. The quadratic model was obtained with a good fit. The removal of COD and TOC were 80% and 74%, respectively. CONCLUSION: This process can be suggested and used in the treatment of various industrial wastewaters. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s40201-021-00687-w.

4.
MethodsX ; 7: 101118, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33204655

RESUMO

Azo dyes are the largest group of synthetic organic dyes which containing the linkage C-N[bond, double bond]N-C and used in various industries such as textile industries leather articles, and some foods. Azo dyes are resistant compounds against the biodegradation processes. The purpose of this research was hybrid UV/COP advanced oxidation process using ZnO as a catalyst immobilized on a stone surface for degradation of acid red 18 (AR18) Dye. In the hybrid process using some parameters such as the dye initial concentration, pH, contact time and catalyst concentration, the process efficiency was investigated. In order to the dye removal, the sole ozonation process (SOP), catalytic ozonation process (COP) and photocatalytic process (UV/ZnO) were used. The ZnO nanoparticles were characterized by XRD, SEM and TEM analyses.  The maximum dye removal was achieved 97% at the dye initial concentration 25 mg/L, catalyst concentration 3 g/L, contact time 40 min and pH 5. As a real sample, the Yazdbaf textile factory wastewater was selected. After that, the physicochemical quality was evaluated. As well as, in the optimal conditions, the AR18 dye removal efficiency was achieved 65%. The kinetic results demonstrated that the degradation reaction was fitted by pseudo-first-order kinetic. The UV/COP hybrid process had high efficiency for removal of resistant dyes from the textile wastewater. Advantages of this technique were as follows:•ZnO nanoparticles were synthesized as catalyst by thermal method and were immobilized on the stones.•pH changes had no significant effect on the removal efficiency.•In the kinetic studies, the decomposition reaction followed pseudo-first order kinetic.

5.
MethodsX ; 6: 1188-1193, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31193519

RESUMO

Phenol is classified as priority pollutant. Phenol and its derivatives are stable in water, environmental contamination, and health concerns that are used as raw material in many chemical industries. This study investigated the removal of phenol by electro-H2O2/UV system. The response surface methodology (RSM) using central composite design (CCD) was used to modeling and optimization of experimental parameters such as pH, contact time, initial concentration of phenol, concentration of hydrogen peroxide, and current density. The obtained results demonstrated that the efficiency of the electro-H2O2/UV system was maximum (>99%) under the optimal conditions for the phenol removal from aqueous solutions, 2 mM of hydrogen peroxide concentration, 50 mg/L of initial phenol concentration, pH of 5, 10 mA/cm2 of current density, reaction time of 25 min and 2.1 kW h/m3 of energy consumption. Therefore, the electro-H2O2/UV system is an efficient method for the removal of organic compounds from industrial wastewater.

6.
Water Sci Technol ; 78(10): 2158-2170, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30629544

RESUMO

Ciprofloxacin (CIP) is considered as a biological resistant pollutant. The CoFe2O4/activated carbon@chitosan (CoFe2O4/AC@Ch) prepared as a new magnetic nanobiocomposite and used for adsorption of CIP. CoFe2O4/AC@Ch was characterized by Fourier transform-infrared (FT-IR), field emission scanning electron microscope (FESEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), vibrating-sample magnetometer (VSM), and Brunauer-Emmett-Teller (BET) surface area measurements. The pHZPC value of the nanobiocomposite was estimated to be 6.4 by solid addition method. The prepared magnetic nanobiocomposites can be separated easily from water by an external magnet and reused. The effect of CIP concentration (10-30 mg/L), adsorbent dosage (12-100 mg/L), contact time (5-30 min) and pH (3-11) as independent variables on ciprofloxacin removal efficiency was evaluated. Optimum conditions were obtained in CIP concentration: 10 mg/L, adsorbent dosage: 100 mg/L, contact time: 15 min and pH: 5. In this condition, maximum CIP removal was obtained as 93.5%. The kinetic and isotherm equations showed that the process of adsorption followed the pseudo-second order kinetic and Langmuir isotherm. The results indicate that the prepared magnetic nanobiocomposite can be used as good adsorbent for the removal of CIP from aqueous solution and can be also recycled.


Assuntos
Quitosana/química , Ciprofloxacina/química , Cobalto/química , Compostos Férricos/química , Nanocompostos/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Adsorção , Ciprofloxacina/análise , Espectroscopia de Infravermelho com Transformada de Fourier , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...