Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1276252, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37790792

RESUMO

Genome or genomic dominance (GD) is a phenomenon observed in hybrids when one parental genome becomes dominant over the other. It is manifested by the replacement of chromatin of the submissive genome by that of the dominant genome and by biased gene expression. Nucleolar dominance (ND) - the functional expression of only one parental set of ribosomal genes in hybrids - is another example of an intragenomic competitive process which, however, concerns ribosomal DNA only. Although GD and ND are relatively well understood, the nature and extent of their potential interdependence is mostly unknown. Here, we ask whether hybrids showing GD also exhibit ND and, if so, whether the dominant genome is the same. To test this, we used hybrids between Festuca and Lolium grasses (Festulolium), and between two Festuca species in which GD has been observed (with Lolium as the dominant genome in Festulolium and F. pratensis in interspecific Festuca hybrids). Using amplicon sequencing of ITS1 and ITS2 of the 45S ribosomal DNA (rDNA) cluster and molecular cytogenetics, we studied the organization and expression of rDNA in leaf tissue in five hybrid combinations, four generations and 31 genotypes [F. pratensis × L. multiflorum (F1, F2, F3, BC1), L. multiflorum × F. pratensis (F1), L. multiflorum × F. glaucescens (F2), L. perenne × F. pratensis (F1), F. glaucescens × F. pratensis (F1)]. We have found that instant ND occurs in Festulolium, where expression of Lolium-type rDNA reached nearly 100% in all F1 hybrids and was maintained through subsequent generations. Therefore, ND and GD in Festulolium are manifested by the same dominant genome (Lolium). We also confirmed the concordance between GD and ND in an interspecific cross between two Festuca species.

2.
BMC Genomics ; 24(1): 572, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37752451

RESUMO

BACKGROUND: Telomeres are the nucleoprotein complexes that physically cap the ends of eukaryotic chromosomes. Most plants possess Arabidopsis-type telomere sequences (TSs). In addition to terminal TSs, more diverse interstitial TSs exists in plants. Although telomeres have been sufficiently studied, the actual diversity of TSs in land plants is underestimated. RESULTS: We investigate genotypes from seven natural populations with contrasting environments of four Chenopodium species to reveal the variability in TSs by analyzing Oxford Nanopore reads. Fluorescent in situ hybridization was used to localize telomeric repeats on chromosomes. We identified a number of derivative monomers that arise in part of both terminal and interstitial telomeric arrays of a single genotype. The former presents a case of block-organized double-monomer telomers, where blocks of Arabidopsis-type TTTAGGG motifs were interspersed with blocks of derivative TTTAAAA motifs. The latter is an integral part of the satellitome with transformations specific to the inactive genome fraction. CONCLUSIONS: We suggested two alternative models for the possible formation of derivative monomers from telomeric heptamer motifs of Arabidopsis-type. It was assumed that derivatization of TSs is a ubiquitous process in the plant genome but occurrence and frequencies of derivatives may be genotype-specific. We also propose that the formation of non-canonical arrays of TSs, especially at chromosomal termini, may be a source for genomic variability in nature.


Assuntos
Arabidopsis , Humanos , Arabidopsis/genética , Hibridização in Situ Fluorescente , Telômero/genética , Genótipo , Eucariotos
3.
New Phytol ; 235(3): 1246-1259, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35460285

RESUMO

During our initial phylogenetic study of the monocot genus Erythronium (Liliaceae), we observed peculiar eudicot-type internal transcribed spacer (ITS) sequences in a dataset derived from genomic DNA of Erythronium dens-canis. This raised the possibility of horizontal transfer of a eudicot alien ribosomal DNA (rDNA) into the Erythronium genome. In this work we aimed to support this hypothesis by carrying out genomic, molecular, and cytogenetic analyses. Genome skimming coupled by PacBio HiFi sequencing of a bacterial artificial chromosome clone derived from flow-sorted nuclei was used to characterise the alien 45S rDNA. Integration of alien rDNA in the recipient genome was further proved by Southern blotting and fluorescence in situ hybridization using specific probes. Alien rDNA, nested among Potentilla species in phylogenetic analysis, likely entered the Erythronium lineage in the common ancestor of E. dens-canis and E. caucasicum. Transferred eudicot-type rDNA preserved its tandemly arrayed feature on a single chromosome and was found to be transcribed in the monocot host, albeit much less efficiently than the native counterpart. This study adds a new example to the rarely documented nuclear-to-nuclear jumps of DNA between eudicots and monocots while holding the scientific community continually in suspense about the mode of DNA transfer.


Assuntos
Liliaceae , Potentilla , DNA Ribossômico/genética , DNA Espaçador Ribossômico/genética , Hibridização in Situ Fluorescente , Filogenia , Potentilla/genética
4.
Mob DNA ; 13(1): 8, 2022 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-35379321

RESUMO

BACKGROUND: CACTA transposable elements (TEs) comprise one of the most abundant superfamilies of Class 2 (cut-and-paste) transposons. Over recent decades, CACTA elements were widely identified in species from the plant, fungi, and animal kingdoms, but sufficiently studied in the genomes of only a few model species although non-model genomes can bring additional and valuable information. It primarily concerned the genomes of species belonging to clades in the base of large taxonomic groups whose genomes, to a certain extent, can preserve relict and/or possesses specific traits. Thus, we sought to investigate the genomes of Chenopodium (Amaranthaceae, Caryophyllales) species to unravel the structural variability of CACTA elements. Caryophyllales is a separate branch of Angiosperms and until recently the diversity of CACTA elements in this clade was unknown. RESULTS: Application of the short-read genome assembly algorithm followed by analysis of detected complete CACTA elements allowed for the determination of their structural diversity in the genomes of 22 Chenopodium album aggregate species. This approach yielded knowledge regarding: (i) the coexistence of two CACTA transposons subtypes in single genome; (ii) gaining of additional protein conserved domains within the coding sequence; (iii) the presence of captured gene fragments, including key genes for flower development; and (iv)) identification of captured satDNA arrays. Wide comparative database analysis revealed that identified events are scattered through Angiosperms in different proportions. CONCLUSIONS: Our study demonstrated that while preserving the basic element structure a wide range of coding and non-coding additions to CACTA transposons occur in the genomes of C. album aggregate species. Ability to relocate additions inside genome in combination with the proposed novel functional features of structural-different CACTA elements can impact evolutionary trajectory of the host genome.

5.
Front Plant Sci ; 12: 672879, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34079572

RESUMO

Nuclear ribosomal DNA (nrDNA) has displayed extraordinary dynamics during the evolution of plant species. However, the patterns and evolutionary significance of nrDNA array expansion or contraction are still relatively unknown. Moreover, only little is known of the fate of minority nrDNA copies acquired between species via horizontal transfer. The barley genus Hordeum (Poaceae) represents a good model for such a study, as species of section Stenostachys acquired nrDNA via horizontal transfer from at least five different panicoid genera, causing long-term co-existence of native (Hordeum-like) and non-native (panicoid) nrDNAs. Using quantitative PCR, we investigated copy number variation (CNV) of nrDNA in the diploid representatives of the genus Hordeum. We estimated the copy number of the foreign, as well as of the native ITS types (ribotypes), and followed the pattern of their CNV in relation to the genus' phylogeny, species' genomes size and the number of nrDNA loci. For the native ribotype, we encountered an almost 19-fold variation in the mean copy number among the taxa analysed, ranging from 1689 copies (per 2C content) in H. patagonicum subsp. mustersii to 31342 copies in H. murinum subsp. glaucum. The copy numbers did not correlate with any of the genus' phylogeny, the species' genome size or the number of nrDNA loci. The CNV was high within the recognised groups (up to 13.2 × in the American I-genome species) as well as between accessions of the same species (up to 4×). Foreign ribotypes represent only a small fraction of the total number of nrDNA copies. Their copy numbers ranged from single units to tens and rarely hundreds of copies. They amounted, on average, to between 0.1% (Setaria ribotype) and 1.9% (Euclasta ribotype) of total nrDNA. None of the foreign ribotypes showed significant differences with respect to phylogenetic groups recognised within the sect. Stenostachys. Overall, no correlation was found between copy numbers of native and foreign nrDNAs suggesting the sequestration and independent evolution of native and non-native nrDNA arrays. Therefore, foreign nrDNA in Hordeum likely poses a dead-end by-product of horizontal gene transfer events.

6.
Plant J ; 105(5): 1141-1164, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33484020

RESUMO

Intra-specific variability is a cornerstone of evolutionary success of species. Acquiring genetic material from distant sources is an important adaptive mechanism in bacteria, but it can also play a role in eukaryotes. In this paper, we investigate the nature and evolution of a chromosomal segment of panicoid (Poaceae, Panicoideae) origin occurring in the nuclear genomes of species of the barley genus Hordeum (Pooideae). The segment, spanning over 440 kb in the Asian Hordeum bogdanii and 219 kb in the South American Hordeum pubiflorum, resides on a pair of nucleolar organizer region (NOR)-bearing chromosomes. Conserved synteny and micro-collinearity of the segment in both species indicate a common origin of the segment, which was acquired before the split of the respective barley lineages 5-1.7 million years ago. A major part of the foreign DNA consists of several approximately 68 kb long repeated blocks containing five stress-related protein-coding genes and transposable elements (TEs). Whereas outside these repeats, the locus was invaded by multiple TEs from the host genome, the repeated blocks are rather intact and appear to be preserved. The protein-coding genes remained partly functional, as indicated by conserved reading frames, a low amount of non-synonymous mutations, and expression of mRNA. A screen across Hordeum species targeting the panicoid protein-coding genes revealed the presence of the genes in all species of the section Stenostachys. In summary, our study shows that grass genomes can contain large genomic segments obtained from distantly related species. These segments usually remain undetected, but they may play an important role in the evolution and adaptation of species.


Assuntos
Cromossomos Artificiais Bacterianos/genética , Hordeum/genética , Panicum/genética , Elementos de DNA Transponíveis/genética , Transferência Genética Horizontal/genética , Hibridização in Situ Fluorescente
7.
PLoS One ; 15(10): e0241206, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33108401

RESUMO

Satellite DNA (satDNA) is one of the major fractions of the eukaryotic nuclear genome. Highly variable satDNA is involved in various genome functions, and a clear link between satellites and phenotypes exists in a wide range of organisms. However, little is known about the origin and temporal dynamics of satDNA. The "library hypothesis" indicates that the rapid evolutionary changes experienced by satDNAs are mostly quantitative. Although this hypothesis has received some confirmation, a number of its aspects are still controversial. A recently developed next-generation sequencing (NGS) method allows the determination of the satDNA landscape and could shed light on unresolved issues. Here, we explore low-coverage NGS data to infer satDNA evolution in the phylogenetic context of the diploid species of the Chenopodium album aggregate. The application of the Illumina read assembly algorithm in combination with Oxford Nanopore sequencing and fluorescent in situ hybridization allowed the estimation of eight satDNA families within the studied group, six of which were newly described. The obtained set of satDNA families of different origins can be divided into several categories, namely group-specific, lineage-specific and species-specific. In the process of evolution, satDNA families can be transmitted vertically and can be eliminated over time. Moreover, transposable element-derived satDNA families may appear repeatedly in the satellitome, creating an illusion of family conservation. Thus, the obtained data refute the "library hypothesis", rather than confirming it, and in our opinion, it is more appropriate to speak about "the library of the mechanisms of origin".


Assuntos
Chenopodium album/genética , DNA de Plantas/análise , DNA Satélite/análise , Diploide , Evolução Molecular , Genoma de Planta , Chenopodium album/crescimento & desenvolvimento , DNA de Plantas/genética , DNA Satélite/genética , Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , Especificidade da Espécie
8.
Mob DNA ; 11: 20, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32607133

RESUMO

Extensive and complex links exist between transposable elements (TEs) and satellite DNA (satDNA), which are the two largest fractions of eukaryotic genome. These relationships have a crucial effect on genome structure, function and evolution. Here, we report a novel case of mutual relationships between TEs and satDNA. In the genomes of Chenopodium s. str. species, the deletion derivatives of tnp2 conserved domain of the newly discovered CACTA-like TE Jozin are involved in generating monomers of the most abundant satDNA family of the Chenopodium satellitome. The analysis of the relative positions of satDNA and different TEs utilizing assembled Illumina reads revealed several associations between satDNA arrays and the transposases of putative CACTA-like elements when an ~ 40 bp fragment of tnp2 served as the start monomer of the satDNA array. The high degree of identity of the consensus satDNA monomers of the investigated species and the tnp2 fragment (from 82.1 to 94.9%) provides evidence of the genesis of CficCl-61-40 satDNA family monomers from analogous regions of their respective parental elements. The results were confirmed via molecular genetic methods and Oxford Nanopore sequencing. The discovered phenomenon leads to the continuous replenishment of species genomes with new identical satDNA monomers, which in turn may increase species satellitomes similarity.

9.
BMC Plant Biol ; 19(1): 230, 2019 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-31151385

RESUMO

BACKGROUND: Interspecific hybridisation resulting in polyploidy is one of the major driving forces in plant evolution. Here, we present data from the molecular cytogenetic analysis of three cytotypes of Elytrigia ×mucronata using sequential fluorescence (5S rDNA, 18S rDNA and pSc119.2 probes) and genomic in situ hybridisation (four genomic probes of diploid taxa, i.e., Aegilops, Dasypyrum, Hordeum and Pseudoroegneria). RESULTS: The concurrent presence of Hordeum (descended from E. repens) and Dasypyrum + Aegilops (descended from E. intermedia) chromosome sets in all cytotypes of E. ×mucronata confirmed the assumed hybrid origin of the analysed plants. The following different genomic constitutions were observed for E. ×mucronata. Hexaploid plants exhibited three chromosome sets from Pseudoroegneria and one chromosome set each from Aegilops, Hordeum and Dasypyrum. Heptaploid plants harboured the six chromosome sets of the hexaploid plants and an additional Pseudoroegneria chromosome set. Nonaploid cytotypes differed in their genomic constitutions, reflecting different origins through the fusion of reduced and unreduced gametes. The hybridisation patterns of repetitive sequences (5S rDNA, 18S rDNA, and pSc119.2) in E. ×mucronata varied between and within cytotypes. Chromosome alterations that were not identified in the parental species were found in both heptaploid and some nonaploid plants. CONCLUSIONS: The results confirmed that both homoploid hybridisation and heteroploid hybridisation that lead to the coexistence of four different haplomes within single hybrid genomes occur in Elytrigia allopolyploids. The chromosomal alterations observed in both heptaploid and some nonaploid plants indicated that genome restructuring occurs during and/or after the hybrids arose. Moreover, a specific chromosomal translocation detected in one of the nonaploids indicated that it was not a primary hybrid. Therefore, at least some of the hybrids are fertile. Hybridisation in Triticeae allopolyploids clearly and significantly contributes to genomic diversity. Different combinations of parental haplomes coupled with chromosomal alterations may result in the establishment of unique lineages, thus providing raw material for selection.


Assuntos
Genótipo , Hibridização Genética , Poaceae/genética , Poliploidia , Análise Citogenética , República Tcheca , DNA de Plantas/análise , Hibridização In Situ , Hibridização in Situ Fluorescente , RNA Ribossômico 18S/análise , RNA Ribossômico 5S/análise
10.
Proc Natl Acad Sci U S A ; 114(7): 1726-1731, 2017 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-28137844

RESUMO

The movement of nuclear DNA from one vascular plant species to another in the absence of fertilization is thought to be rare. Here, nonnative rRNA gene [ribosomal DNA (rDNA)] copies were identified in a set of 16 diploid barley (Hordeum) species; their origin was traceable via their internal transcribed spacer (ITS) sequence to five distinct Panicoideae genera, a lineage that split from the Pooideae about 60 Mya. Phylogenetic, cytogenetic, and genomic analyses implied that the nonnative sequences were acquired between 1 and 5 Mya after a series of multiple events, with the result that some current Hordeum sp. individuals harbor up to five different panicoid rDNA units in addition to the native Hordeum rDNA copies. There was no evidence that any of the nonnative rDNA units were transcribed; some showed indications of having been silenced via pseudogenization. A single copy of a Panicum sp. rDNA unit present in H. bogdanii had been interrupted by a native transposable element and was surrounded by about 70 kbp of mostly noncoding sequence of panicoid origin. The data suggest that horizontal gene transfer between vascular plants is not a rare event, that it is not necessarily restricted to one or a few genes only, and that it can be selectively neutral.


Assuntos
Núcleo Celular/genética , DNA Ribossômico/genética , Transferência Genética Horizontal , Filogenia , Poaceae/genética , DNA de Plantas/química , DNA de Plantas/genética , DNA Ribossômico/química , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , Diploide , Evolução Molecular , Genes de Plantas/genética , Hordeum/classificação , Hordeum/genética , Poaceae/classificação , Análise de Sequência de DNA
11.
PLoS One ; 8(7): e68514, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23874648

RESUMO

BACKGROUND: North American Pinus strobus is a highly invasive tree species in Central Europe. Using ten polymorphic microsatellite loci we compared various aspects of the large-scale genetic diversity of individuals from 30 sites in the native distribution range with those from 30 sites in the European adventive distribution range. To investigate the ascertained pattern of genetic diversity of this intercontinental comparison further, we surveyed fine-scale genetic diversity patterns and changes over time within four highly invasive populations in the adventive range. RESULTS: Our data show that at the large scale the genetic diversity found within the relatively small adventive range in Central Europe, surprisingly, equals the diversity found within the sampled area in the native range, which is about thirty times larger. Bayesian assignment grouped individuals into two genetic clusters separating North American native populations from the European, non-native populations, without any strong genetic structure shown over either range. In the case of the fine scale, our comparison of genetic diversity parameters among the localities and age classes yielded no evidence of genetic diversity increase over time. We found that SGS differed across age classes within the populations under study. Old trees in general completely lacked any SGS, which increased over time and reached its maximum in the sapling stage. CONCLUSIONS: Based on (1) the absence of difference in genetic diversity between the native and adventive ranges, together with the lack of structure in the native range, and (2) the lack of any evidence of any temporal increase in genetic diversity at four highly invasive populations in the adventive range, we conclude that population amalgamation probably first happened in the native range, prior to introduction. In such case, there would have been no need for multiple introductions from previously isolated populations, but only several introductions from genetically diverse populations.


Assuntos
Variação Genética/fisiologia , Espécies Introduzidas , Pinus/genética , Análise por Conglomerados , Europa (Continente) , Fluxo Gênico/fisiologia , Especiação Genética , Genética Populacional , Repetições de Microssatélites , América do Norte , Pinus/classificação , Fatores de Tempo
12.
Mol Biol Evol ; 30(9): 2065-86, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23741054

RESUMO

We employed sequencing of clones and in situ hybridization (genomic and fluorescent in situ hybridization [GISH and rDNA-FISH]) to characterize both the sequence variation and genomic organization of 45S (herein ITS1-5.8S-ITS2 region) and 5S (5S gene + nontranscribed spacer) ribosomal DNA (rDNA) families in the allohexaploid grass Thinopyrum intermedium. Both rDNA families are organized within several rDNA loci within all three subgenomes of the allohexaploid species. Both families have undergone different patterns of evolution. The 45S rDNA family has evolved in a concerted manner: internal transcribed spacer (ITS) sequences residing within the arrays of two subgenomes out of three got homogenized toward one major ribotype, whereas the third subgenome contained a minor proportion of distinct unhomogenized copies. Homogenization mechanisms such as unequal crossover and/or gene conversion were coupled with the loss of certain 45S rDNA loci. Unlike in the 45S family, the data suggest that neither interlocus homogenization among homeologous chromosomes nor locus loss occurred in 5S rDNA. Consistently with other Triticeae, the 5S rDNA family in intermediate wheatgrass comprised two distinct array types-the long- and short-spacer unit classes. Within the long and short units, we distinguished five and three different types, respectively, likely representing homeologous unit classes donated by putative parental species. Although the major ITS ribotype corresponds in our phylogenetic analysis to the E-genome species, the minor ribotype corresponds to Dasypyrum. 5S sequences suggested the contributions from Pseudoroegneria, Dasypyrum, and Aegilops. The contribution from Aegilops to the intermediate wheatgrass' genome is a new finding with implications in wheat improvement. We discuss rDNA evolution and potential origin of intermediate wheatgrass.


Assuntos
DNA Espaçador Ribossômico/classificação , Evolução Molecular , Genoma de Planta , Filogenia , Poaceae/classificação , RNA Ribossômico 5S/classificação , RNA Ribossômico/classificação , Agricultura , Sequência de Bases , Cromossomos de Plantas , DNA Espaçador Ribossômico/genética , Loci Gênicos , Especiação Genética , Hibridização In Situ , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Ploidias , Poaceae/genética , RNA Ribossômico/genética , RNA Ribossômico 5S/genética , Análise de Sequência de DNA
13.
PLoS One ; 7(11): e49471, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23185340

RESUMO

We attempted to confirm that seed banks can be viewed as an important genetic reservoir by testing the hypothesis that standing (aboveground) plants represent a nonrandom sample of the seed bank. We sampled multilocus allozyme genotypes from three species with different life history strategies: Amaranthus retroflexus, Carduus acanthoides, Pastinaca sativa. In four populations of each species we analysed the extent to which allele and genotype frequencies vary in consecutive life history stages including the summer seed bank, which has been overlooked up to now. We compared the winter seed bank (i.e., seeds collected before the spring germination peak), seedlings, rosettes, the summer seed bank (i.e., seeds collected after the spring germination peak) and fruiting plants. We found that: (1) All three species partitioned most of their genetic diversity within life history stages and less among stages within populations and among populations. (2) All genetic diversity parameters, except for allele frequencies, were similar among all life history stages across all populations in different species. (3) There were differences in allele frequencies among life history stages at all localities in Amaranthus retroflexus and at three localities in both Carduus acanthoides and Pastinaca sativa. (4) Allele frequencies did not differ between the winter and summer seed bank in most Carduus acanthoides and Pastinaca sativa populations, but there was a marked difference in Amaranthus retroflexus. In conclusion, we have shown that the summer seed bank is not genetically depleted by spring germination and that a majority of genetic diversity remains in the soil through summer. We suggest that seed banks in the species investigated play an important role by maintaining genetic diversity sufficient for recovery rather than by accumulating new genetic diversity at each locality.


Assuntos
Sementes/química , Sementes/genética , Solo/análise , Alelos , Amaranthus/fisiologia , Carduus/fisiologia , Ecossistema , Variação Genética , Geografia , Modelos Genéticos , Modelos Estatísticos , Pastinaca/fisiologia , Plantas/genética , Estações do Ano , Especificidade da Espécie
14.
BMC Evol Biol ; 11: 127, 2011 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-21592357

RESUMO

BACKGROUND: The wheat tribe Triticeae (Poaceae) is a diverse group of grasses representing a textbook example of reticulate evolution. Apart from globally important grain crops, there are also wild grasses which are of great practical value. Allohexaploid intermediate wheatgrass, Thinopyrum intermedium (2n = 6x = 42), possesses many desirable agronomic traits that make it an invaluable source of genetic material useful in wheat improvement. Although the identification of its genomic components has been the object of considerable investigation, the complete genomic constitution and its potential variability are still being unravelled. To identify the genomic constitution of this allohexaploid, four accessions of intermediate wheatgrass from its native area were analysed by sequencing of chloroplast trnL-F and partial nuclear GBSSI, and genomic in situ hybridization. RESULTS: The results confirmed the allopolyploid origin of Thinopyrum intermedium and revealed new aspects in its genomic composition. Genomic heterogeneity suggests a more complex origin of the species than would be expected if it originated through allohexaploidy alone. While Pseudoroegneria is the most probable maternal parent of the accessions analysed, nuclear GBSSI sequences suggested the contribution of distinct lineages corresponding to the following present-day genera: Pseudoroegneria, Dasypyrum, Taeniatherum, Aegilops and Thinopyrum. Two subgenomes of the hexaploid have most probably been contributed by Pseudoroegneria and Dasypyrum, but the identity of the third subgenome remains unresolved satisfactorily. Possibly it is of hybridogenous origin, with contributions from Thinopyrum and Aegilops. Surprising diversity of GBSSI copies corresponding to a Dasypyrum-like progenitor indicates either multiple contributions from different sources close to Dasypyrum and maintenance of divergent copies or the presence of divergent paralogs, or a combination of both. Taeniatherum-like GBSSI copies are most probably pseudogenic, and the mode of their acquisition by Th. intermedium remains unclear. CONCLUSIONS: Hybridization has played a key role in the evolution of the Triticeae. Transfer of genetic material via extensive interspecific hybridization and/or introgression could have enriched the species' gene pools significantly. We have shown that the genomic heterogeneity of intermediate wheatgrass is higher than has been previously assumed, which is of particular concern to wheat breeders, who frequently use it as a source of desirable traits in wheat improvement.


Assuntos
Genoma de Planta , Proteínas de Plantas/genética , Triticum/genética , Filogenia , Poliploidia , Sintase do Amido/genética
15.
Mol Biol Evol ; 27(6): 1370-90, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20106909

RESUMO

Four accessions of hexaploid Elymus repens from its native Central European distribution area were analyzed using sequencing of multicopy (internal transcribed spacer, ITS) and single-copy (granule-bound starch synthase I, GBSSI) DNA in concert with genomic and fluorescent in situ hybridization (GISH and FISH) to disentangle its allopolyploid origin. Despite extensive ITS homogenization, nrDNA in E. repens allowed us to identify at least four distinct lineages. Apart from Pseudoroegneria and Hordeum, representing the major genome constituents, the presence of further unexpected alien genetic material, originating from species outside the Triticeae and close to Panicum (Paniceae) and Bromus (Bromeae), was revealed. GBSSI sequences provided information complementary to the ITS. Apart from Pseudoroegneria and Hordeum, two additional gene variants from within the Triticeae were discovered: One was Taeniatherum-like, but the other did not have a close relationship with any of the diploids sampled. GISH results were largely congruent with the sequence-based markers. GISH clearly confirmed Pseudoroegneria and Hordeum as major genome constituents and further showed the presence of a small chromosome segment corresponding to Panicum. It resided in the Hordeum subgenome and probably represents an old acquisition of a Hordeum progenitor. Spotty hybridization signals across all chromosomes after GISH with Taeniatherum and Bromus probes suggested that gene acquisition from these species is more likely due to common ancestry of the grasses or early introgression than to recent hybridization or allopolyploid origin of E. repens. Physical mapping of rDNA loci using FISH revealed that all rDNA loci except one minor were located on Pseudoroegneria-derived chromosomes, which suggests the loss of all Hordeum-derived loci but one. Because homogenization mechanisms seem to operate effectively among Pseudoroegneria-like copies in this species, incomplete ITS homogenization in our samples is probably due to an interstitial position of an individual minor rDNA locus located within the Hordeum-derived subgenome.


Assuntos
Análise Citogenética/métodos , Genes de Plantas , Modelos Genéticos , Poaceae/genética , Sintase do Amido/genética , Teorema de Bayes , DNA Intergênico , DNA Ribossômico , Bases de Dados Genéticas , Transferência Genética Horizontal , Hibridização in Situ Fluorescente , Filogenia , Pseudogenes , Transcrição Gênica
16.
Ann Bot ; 100(2): 249-60, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17562679

RESUMO

BACKGROUND AND AIMS: Natural hybridization was investigated between two predominantly allohexaploid wheatgrasses, weedy Elytrigia repens and steppic E. intermedia, with respect to habitats characterized by different degrees of anthropogenic disturbance. METHODS: Using flow cytometry (relative DNA content), 269 plants from three localities were analysed. Hybrids were further analysed using nuclear ribosomal (ITS1-5.8S-ITS2 region) and chloroplast (trnT-F region) DNA markers in addition to absolute DNA content and chromosome numbers. KEY RESULTS: Weedy E. repens was rare in a steppic locality whereas E. intermedia was almost absent at two sites of agricultural land-use. Nevertheless, hybrids were common there whereas none were found at the steppic locality, underlining the importance of different ecological conditions for hybrid formation or establishment. At one highly disturbed site, > 16 % of randomly collected plants were hybrids. Hexaploid hybrids showed intermediate genome size compared with the parents and additive patterns of parental ITS copies. Some evidence of backcrosses was found. The direction of hybridization was highly asymmetric as cpDNA identified E. intermedia as the maternal parent in 61 out of 63 cases. Out of nine nonaploid cytotypes (2n = 9x = 63) which likely originated by fusion of unreduced and reduced gametes of hexaploids, eight were hybrids whereas one was a nonaploid cytotype of E. repens. The progeny of one nonaploid hybrid demonstrated gene flow between hexaploid and nonaploid cytotypes. CONCLUSIONS: The results show that E. repens and E. intermedia frequently cross at places where they co-occur. Hybrid frequency is likely influenced by habitat type; sites disturbed by human influence sustain hybrid formation and/or establishment. Hexaploid and nonaploid hybrid fertility is not negligible, backcrossing is possible, and the progeny is variable. The frequent production of new at least partially fertile cyto- and genotypes provides ample raw material for evolution and adaptation.


Assuntos
DNA de Cloroplastos , Ecossistema , Hibridização Genética , Poaceae/genética , Poliploidia , Cromossomos de Plantas , DNA Espaçador Ribossômico , Fertilidade/genética , Citometria de Fluxo , Marcadores Genéticos , Genoma de Planta
17.
Ann Bot ; 96(5): 901-12, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16107428

RESUMO

BACKGROUND AND AIMS: Genetic variability was estimated for Atriplex tatarica from 25 populations in the Czech Republic. Since its north-western range margin is in central Europe, a relationship between marginality and low within-population genetic diversity was tested in accordance with the Central-Marginal Model. METHODS: Population genetic diversity was expressed by assessing patterns of variation at 13 putatively neutral allozyme loci (comprising 30 putative alleles) within and between 25 natural populations of A. tatarica along a north-west-south-east transect in the Czech Republic. KEY RESULTS: Atriplex tatarica is a species of human-made habitats with a mixed mating system and wide geographic distribution. Overall, A. tatarica displayed moderate levels of genetic diversity in comparison with other herbaceous plants. The percentage of loci that were polymorphic was 47.1%, with average values of 1.55, 0.151 and 0.155 for the average number of alleles per polymorphic locus (A), observed heterozygosity (Ho) and expected heterozygosity (He), respectively. There was only weak evidence of inbreeding within populations (FIS=0.031) and significant population differentiation (FST=0.214). Analysis of the data provides no evidence for isolation-by-distance for the whole study area. However, Mantel tests were highly significant for the marginal Bohemian region and non-significant for the central Moravian region. While northern populations of A. tatarica showed significantly lower allelic richness (A=1.462) than populations from the southern part of the study area (A=1.615), they did not differ in observed heterozygosity (Ho), gene diversity (HS), inbreeding within populations (FIS) or population differentiation (FST), despite generally lower values of particular genetic measurements in the marginal region. CONCLUSIONS: Genetic diversity, with the exception of allelic richness, was not significantly lower at the margins of the species' range. This, therefore, provides only weak support for the predictions of the Central-Marginal Model.


Assuntos
Chenopodiaceae/genética , Variação Genética/genética , Geografia , Chenopodiaceae/classificação , Chenopodiaceae/enzimologia , República Tcheca , Frequência do Gene , Isoenzimas/genética , Filogenia , Proteínas de Plantas/genética , Polimorfismo Genético/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...