Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 162: 114659, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37068335

RESUMO

Fair flawless skin is the goal for some cultures and the development of irregular skin pigmentation is considered an indication of premature skin aging. Hence, there is a rising demand for skin whitening cosmetics. Thus, this research will be focusing on discovering the anti-pigmentation properties of Swietenia macrophylla seeds. Firstly, the seeds were extracted with ethanol and further fractionate based on their polarity before testing them on zebrafish embryos. The ethanolic extract of the seed demonstrated significant inhibition of both tyrosinase activity and melanin production in the embryos. However, after fractionation, the anti-melanogenic ability was observed to have decreased, signifying that the phytocompounds may be synergistic in nature. Still in the proteomic studies the ethanolic extract and its hexane fraction both induced the downregulation of cathepsin LB and cytoskeletal proteins that have connections to the melanogenic pathway, confirming that S. macrophylla seeds do indeed have anti-pigmentation properties that can be exploited for cosmetic use. Next, limonoids (tetranortriterpenoids found in the seed) were tested for their inhibitory effect against human tyrosinase related protein 1 (TYRP-1) via molecular docking. It was found that limonoids have a stronger binding affinity to TYRP-1 than kojic acid, suggesting that these phytocompounds may have the potential in inhibiting pigmentation. However, this still needs further confirmation before these phytocompounds can be developed into a skin whitening agent. Other assays like ex-vivo or 3D human skin culture can also be used to better study the seeds anti-pigmentation effect on humans.


Assuntos
Limoninas , Meliaceae , Animais , Humanos , Melaninas/metabolismo , Simulação de Acoplamento Molecular , Monofenol Mono-Oxigenase/metabolismo , Peixe-Zebra/metabolismo , Proteômica , Meliaceae/química
2.
Antioxidants (Basel) ; 11(5)2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35624777

RESUMO

The importance of cosmetics in our lives is immeasurable. Covering items from daily personal hygienic products to skincare, it has become essential to consumers that the items that they use are safe and effective. Since natural products are from natural sources, and therefore considered "natural" and "green" in the public's eyes, the rise in demand for such products is not surprising. Even so, factoring in the need to remain on trend and innovative, cosmetic companies are on a constant search for new ingredients and inventive new formulations. Based on numerous literature, the seed of Swietenia macrophylla has been shown to possess several potential "cosmetic-worthy" bioproperties, such as skin whitening, photoprotective, antioxidant, antimicrobial, etc. These properties are vital in the cosmetic business, as they ultimately contribute to the "ageless" beauty that many consumers yearn for. Therefore, with further refinement and research, these active phytocompounds may be a great contribution to the cosmetic field in the near future.

3.
Int J Mol Sci ; 23(5)2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35270025

RESUMO

Sunlight is an important factor in regulating the central circadian rhythm, including the modulation of our sleep/wake cycles. Sunlight had also been discovered to have a prominent influence on our skin's circadian rhythm. Overexposure or prolonged exposure to the sun can cause skin photodamage, such as the formation of irregular pigmentation, collagen degradation, DNA damage, and even skin cancer. Hence, this review will be looking into the detrimental effects of sunlight on our skin, not only at the aspect of photoaging but also at its impact on the skin's circadian rhythm. The growing market trend of natural-product-based cosmeceuticals as also caused us to question their potential to modulate the skin's circadian rhythm. Questions about how the skin's circadian rhythm could counteract photodamage and how best to maximize its biopotential will be discussed in this article. These discoveries regarding the skin's circadian rhythm have opened up a completely new level of understanding of our skin's molecular mechanism and may very well aid cosmeceutical companies, in the near future, to develop better products that not only suppress photoaging but remain effective and relevant throughout the day.


Assuntos
Cosmecêuticos , Envelhecimento da Pele , Dermatopatias , Ritmo Circadiano/fisiologia , Cosmecêuticos/metabolismo , Humanos , Pele/metabolismo , Dermatopatias/metabolismo
4.
Molecules ; 26(7)2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33916053

RESUMO

In this day and age, the expectation of cosmetic products to effectively slow down skin photoaging is constantly increasing. However, the detrimental effects of UVB on the skin are not easy to tackle as UVB dysregulates a wide range of molecular changes on the cellular level. In our research, irradiated keratinocyte cells not only experienced a compromise in their redox system, but processes from RNA translation to protein synthesis and folding were also affected. Aside from this, proteins involved in various other processes like DNA repair and maintenance, glycolysis, cell growth, proliferation, and migration were affected while the cells approached imminent cell death. Additionally, the collagen degradation pathway was also activated by UVB irradiation through the upregulation of inflammatory and collagen degrading markers. Nevertheless, with the treatment of Swietenia macrophylla (S. macrophylla) seed extract and fractions, the dysregulation of many genes and proteins by UVB was reversed. The reversal effects were particularly promising with the S. macrophylla hexane fraction (SMHF) and S. macrophylla ethyl acetate fraction (SMEAF). SMHF was able to oppose the detrimental effects of UVB in several different processes such as the redox system, DNA repair and maintenance, RNA transcription to translation, protein maintenance and synthesis, cell growth, migration and proliferation, and cell glycolysis, while SMEAF successfully suppressed markers related to skin inflammation, collagen degradation, and cell apoptosis. Thus, in summary, our research not only provided a deeper insight into the molecular changes within irradiated keratinocytes, but also serves as a model platform for future cosmetic research to build upon. Subsequently, both SMHF and SMEAF also displayed potential photoprotective properties that warrant further fractionation and in vivo clinical trials to investigate and obtain potential novel bioactive compounds against photoaging.


Assuntos
Meliaceae/química , Extratos Vegetais/farmacologia , Sementes/química , Envelhecimento da Pele/efeitos dos fármacos , Envelhecimento da Pele/efeitos da radiação , Raios Ultravioleta/efeitos adversos , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Cromatografia Líquida , Cosméticos , Epiderme/efeitos dos fármacos , Epiderme/metabolismo , Epiderme/efeitos da radiação , Perfilação da Expressão Gênica/métodos , Humanos , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Queratinócitos/efeitos da radiação , Espectrometria de Massas , Oxirredução/efeitos dos fármacos , Extratos Vegetais/química , Proteômica/métodos
5.
Oxid Med Cell Longev ; 2020: 1904178, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32855763

RESUMO

Retinal pigment epithelial (RPE) cells are an essential part of the human eye because they not only mediate and control the transfer of fluids and solutes but also protect the retina against photooxidative damage and renew photoreceptor cells through phagocytosis. However, their function necessitates cumulative exposure to the sun resulting in UV damage, which may lead to the development of age-related macular degeneration (AMD). Several studies have shown that UVB induces direct DNA damage and oxidative stress in RPE cells by increasing ROS and dysregulating endogenous antioxidants. Activation of different signaling pathways connected to inflammation, cell cycle arrest, and intrinsic apoptosis was reported as well. Besides that, essential functions like phagocytosis, osmoregulation, and water permeability of RPE cells were also affected. Although the melanin within RPE cells can act as a photoprotectant, this photoprotection decreases with age. Nevertheless, the changes in lens epithelium-derived growth factor (LEDGF) and autophagic activity or application of bioactive compounds from natural products can reverse the detrimental effect of UVB. Additionally, in vivo studies on the whole retina demonstrated that UVB irradiation induces gene and protein level dysregulation, indicating cellular stress and aberrations in the chromosome level. Morphological changes like retinal depigmentation and drusen formation were noted as well which is similar to the etiology of AMD, suggesting the connection of UVB damage with AMD. Therefore, future studies, which include mechanism studies via in vitro or in vivo and other potential bioactive compounds, should be pursued for a better understanding of the involvement of UVB in AMD.


Assuntos
Células Epiteliais/efeitos da radiação , Degeneração Macular/patologia , Epitélio Pigmentado da Retina/efeitos da radiação , Raios Ultravioleta , Apoptose/efeitos da radiação , Células Epiteliais/patologia , Humanos , Inflamassomos/metabolismo , Epitélio Pigmentado da Retina/patologia
6.
Front Pharmacol ; 11: 366, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32372949

RESUMO

Angelicin, a member of the furocoumarin group, is related to psoralen which is well known for its effectiveness in phototherapy. The furocoumarins as a group have been studied since the 1950s but only recently has angelicin begun to come into its own as the subject of several biological studies. Angelicin has demonstrated anti-cancer properties against multiple cell lines, exerting effects via both the intrinsic and extrinsic apoptotic pathways, and also demonstrated an ability to inhibit tubulin polymerization to a higher degree than psoralen. Besides that, angelicin too demonstrated anti-inflammatory activity in inflammatory-related respiratory and neurodegenerative ailments via the activation of NF-κB pathway. Angelicin also showed pro-osteogenesis and pro-chondrogenic effects on osteoblasts and pre-chondrocytes respectively. The elevated expression of pro-osteogenic and chondrogenic markers and activation of TGF-ß/BMP, Wnt/ß-catenin pathway confirms the positive effect of angelicin bone remodeling. Angelicin also increased the expression of estrogen receptor alpha (ERα) in osteogenesis. Other bioactivities, such as anti-viral and erythroid differentiating properties of angelicin, were also reported by several researchers with the latter even displaying an even greater aptitude as compared to the commonly prescribed drug, hydroxyurea, which is currently on the market. Apart from that, recently, a new application for angelicin against periodontitis had been studied, where reduction of bone loss was indirectly caused by its anti-microbial properties. All in all, angelicin appears to be a promising compound for further studies especially on its mechanism and application in therapies for a multitude of common and debilitating ailments such as sickle cell anaemia, osteoporosis, cancer, and neurodegeneration. Future research on the drug delivery of angelicin in cancer, inflammation and erythroid differentiation models would aid in improving the bioproperties of angelicin and efficacy of delivery to the targeted site. More in-depth studies of angelicin on bone remodeling, the pro-osteogenic effect of angelicin in various bone disease models and the anti-viral implications of angelicin in periodontitis should be researched. Finally, studies on the binding of angelicin toward regulatory genes, transcription factors, and receptors can be done through experimental research supplemented with molecular docking and molecular dynamics simulation.

7.
Microbiologyopen ; 8(10): e859, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31199601

RESUMO

Microbial natural products serve as a good source for antioxidants. The mangrove-derived Streptomyces bacteria have been evidenced to produce antioxidative compounds. This study reports the isolation of Streptomyces sp. MUM273b from mangrove soil that may serve as a promising source of antioxidants and UV-protective agents. Identification and characterization methods determine that strain MUM273b belongs to the genus Streptomyces. The MUM273b extract exhibits antioxidant activities, including DPPH, ABTS, and superoxide radical scavenging activities and also metal-chelating activity. The MUM273b extract was also shown to inhibit the production of malondialdehyde in metal-induced lipid peroxidation. Strong correlation between the antioxidant activities and the total phenolic content of MUM273b extract was shown. In addition, MUM273b extract exhibited cytoprotective effect on the UVB-induced cell death in HaCaT keratinocytes. Gas chromatography-mass spectrometry analysis detected phenolics, pyrrole, pyrazine, ester, and cyclic dipeptides in MUM273b extract. In summary, Streptomyces MUM273b extract portrays an exciting avenue for future antioxidative drugs and cosmeceuticals development.


Assuntos
Antioxidantes/isolamento & purificação , Produtos Biológicos/isolamento & purificação , Protetores contra Radiação/isolamento & purificação , Streptomyces/química , Antioxidantes/farmacologia , Produtos Biológicos/farmacologia , Sobrevivência Celular/efeitos da radiação , Quelantes/isolamento & purificação , Quelantes/farmacologia , Cromatografia Gasosa-Espectrometria de Massas , Queratinócitos/fisiologia , Queratinócitos/efeitos da radiação , Malásia , Protetores contra Radiação/farmacologia , Microbiologia do Solo , Streptomyces/classificação , Streptomyces/genética , Streptomyces/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...