Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2287: 295-312, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34270038

RESUMO

Here, we describe a method of triticale isolated microspore culture for production of doubled haploid plants via androgenesis. We use this method routinely because it is highly efficient and works well on different triticale genotypes. To force microspores into becoming embryogenic, we apply a 21-day cold pretreatment. The shock of cold facilitates redirecting microspores from their predestined pollen developmental program into the androgenesis pathway. Ovaries are included in our culture methods to help with embryogenesis, and the histone deacytelase inhibitor Trichostatin A (TSA) is added to further improve androgenesis and increase our ability to recover green doubled haploid plants.


Assuntos
Gametogênese Vegetal , Técnicas de Cultura de Tecidos/métodos , Triticale/crescimento & desenvolvimento , Meios de Cultura , Haploidia , Pólen/embriologia , Pólen/genética , Pólen/crescimento & desenvolvimento , Triticale/embriologia , Triticale/genética
2.
Colloids Surf B Biointerfaces ; 157: 207-214, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28599181

RESUMO

Microspores are the pre-gametophyte stage of pollen, and have proven to be a successful tissue culture material for the production of doubled haploid plants. Microspore culture has also been used as a platform for the production of transgenic plants. The use of cell-penetrating peptides (CPPs) as transfection agents in microspores has been previously demonstrated, but at low efficiencies. Here, the pH dependent adsorption of the cationic CPP Tat2 to the sporopollenin surface of the microspore (the exine) has been explored using electrophoretic light scattering (ELS). Furthermore the adsorption of a commercially available polycationic polymer; Luviquat FC-370 (polyquaternium D-16, PQ-D16) was similarly measured using ELS. It was found that a suspension media with a pH less than 7.0 showed an approximately ten fold decrease in the amount of Tat2 that was required before apparent surface neutralization. This data suggests that a change in the surface chemistry of the microspore occurs in acidic pH conditions, that modulates the binding affinity of the CPP Tat2 in a non-trivially complex manner.


Assuntos
Peptídeos Penetradores de Células/química , Poliaminas/química , Triticale/química , Adsorção , Biopolímeros/química , Carotenoides/química , Concentração de Íons de Hidrogênio , Polieletrólitos
3.
Front Mol Biosci ; 4: 30, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28560213

RESUMO

Cell-penetrating peptides (CPPs) are short 8-30 amino-acid oligopeptides that act as effective transducers of macromolecular cargo, particularly nucleic acids. They have been implemented in delivering dsDNA, ssDNA, and dsRNA into animal and plant cells. CPPs and nucleic acids form nano-complexes that are often 100-300 nm in size but still effectively transit the cell membrane of animal cells, but are less effective with plant cells due to the plant cell wall. To overcome this obstacle, nano-complexes of the CPP Tat2 and various lengths of nucleic acid (21-mer siRNA duplex (dsRNA) to ~5.5 kb circular plasmid) were evaluated for size using dynamic light scattering (DLS), under conditions of increasing ionic strength (Ic) and addition of phase transfer catalyst salts (tetrabutylammonium bromide-TBAB and tetrabutylphosphonium bromide-TBPB) and sugars (maltose-mannitol solution). It was found that the combination of 21-mer siRNA:Tat2 complexes with TBPB produced small 10-20 nm diameter nano-complexes with a polydispersity index (PDI) of ~0.1. Furthermore, it was found that for each length of nucleic acid that a linear mathematical relationship existed between the theoretical volume of the nano-complex and the nucleic acid length. Next, nano-complex formulation was tested for its ability to carry small interfering RNA molecules into plant cells and to trigger silencing of phytoene desaturase (PDS) in Triticale leaves. RT-qPCR showed 75% suppression of PDS, demonstrating that TBPB acts as an adjuvant in effecting the entry and efficacy of siRNA in young Triticale plants.

4.
Front Plant Sci ; 7: 296, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27014319

RESUMO

The present study demonstrates Agrobacterium tumefaciens-mediated stable genetic transformation of two species of poplar - Populus angustifolia and Populus balsamifera. The binary vector pCAMBIA-Npro-long-Luc containing the luciferase reporter gene was used to transform stem internode and axillary bud explants. Putative transformants were regenerated on selection-free medium using our previously established in vitro regeneration method. Explant type, genotype, effect of pre-culture, Agrobacterium concentration, a time period of infection and varying periods of co-culture with bacteria were tested for the transformation frequency. The highest frequency of transformation was obtained with stem internode explants pre-cultured for 2 days, infected with Agrobacterium culture at the concentration of OD600 = 0.5 for 10 min and co-cultivated with Agrobacterium for 48 h. Out of the two genotypes tested, P. balsamifera exhibited a higher transformation rate in comparison to P. angustifolia. The primary transformants that exhibited luciferase activity in a bioluminescence assay under the CCD camera when subjected to polymerase chain reaction and Southern blot analysis revealed a stable single-copy integration of luc in their genomes. The reported protocol is highly reproducible and can be applied to other species of poplar; it will also be useful for future genetic engineering of one of the most important families of woody plants for sustainable development.

5.
Front Plant Sci ; 7: 1931, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28082995

RESUMO

Microspore cell death and low green plant production efficiency are an integral obstacle in the development of doubled haploid production in wheat. The aim of the current study was to determine the effect of anti-apoptotic recombinant human B-cell lymphoma-2 (Bcl-2△21) and caspase-3-inhibitor (Ac-DEVD-CHO) in microspore cell death in bread wheat cultivars AC Fielder and AC Andrew. Induction medium containing Bcl-2△21 and Ac-DEVD-CHO yielded a significantly higher number of viable microspores, embryo-like structures and total green plants in wheat cultivars AC Fielder and AC Andrew. Total peroxidase activity was lower in Bcl-2△21 treated microspore cultures at 96 h of treatment compared to control and Ac-DEVD-CHO. Electron paramagnetic resonance study of total microspore protein showed a different scavenging activity for Bcl-2△21 and Ac-DEVD-CHO. Bcl-2△21 scavenged approximately 50% hydroxyl radical (HO•) formed, whereas Ac-DEVD-CHO scavenged approximately 20% of HO•. Conversely, reduced caspase-3-like activities were detected in the presence of Bcl-2△21 and Ac-DEVD-CHO, supporting the involvement of Bcl-2△21 and Ac-DEVD-CHO in increasing microspore viability by reducing oxidative stress and caspase-3-like activity. Our results indicate that Bcl-2△21 and Ac-DEVD-CHO protects cells from cell death following different pathways. Bcl-2△21 prevents cell damage by detoxifying HO• and suppressing caspase-3-like activity, while Ac-DEVD-CHO inhibits the cell death pathways by modulating caspase-like activity.

6.
N Biotechnol ; 29(1): 144-55, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-21722759

RESUMO

Brassica napus (canola) is the second largest oilseed crop in the world. It is among the first crops to be genetically transformed, and genetically modified cultivars are in commercial production at very significant levels. Despite the early lead with respect to transgenesis, there remain cultivars that are recalcitrant to transformation. To address this, we have conducted an elaborate investigation of the conditions for regenerating shoots from hypocotyl explants from four genetic lines: Invigor 5020, Westar and Topas as well as a microspore culture derived line of Topas (Line 4079). We analyzed the effect of hormonal combinations in regeneration medium, donor plant age and explant type on the regeneration capacity of these plants. The analysis showed that hypocotyls of eight-day-old seedlings grown on media supplemented with 1mg/L dinitrophenylhydrazine (2,4-D) produced the most shoots. Globular somatic embryos emerged following two weeks of 2,4-D treatment. When transferred to the medium containing 5mg/L benzyladenine (BA), approximately 82% of embryos produced shoots within six weeks. Invigor plants were shown to regenerate more efficiently than Topas; the number of plantlets regenerated from Invigor was approximately 40-50% more as compared to Topas or Line 4079. When hypocotyl explants were co-cultivated with the Agrobacterium strain GV3101 harboring a binary vector carrying a firefly luciferase reporter gene (LUC), significant numbers of plantlets were LUC-positive in a luciferase assay. Frequency of such plants were: Invigor 5020 (54.2 ± 2.5%), Westar (53.7 ± 5.3), Topas (16.0 ± 0.24) and Line 4079 (13.4 ± 4).


Assuntos
Brassica napus/genética , Regeneração/genética , Transformação Genética , Agricultura/métodos , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , Brassica napus/anatomia & histologia , Brassica napus/microbiologia , Produtos Agrícolas , Técnicas de Transferência de Genes , Engenharia Genética/métodos , Hipocótilo/anatomia & histologia , Hipocótilo/fisiologia , Brotos de Planta/anatomia & histologia , Brotos de Planta/fisiologia
7.
N Biotechnol ; 28(6): 778-87, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21640207

RESUMO

In the present study, interactions between the duration of treatment with auxin and different cytokinins and their effect on shoot regeneration were evaluated with the aim to establish a rapid and efficient in vitro regeneration method applicable to a variety of Populus species. Three different species, Populus angustifolia, P. balsamifera, and P. deltoids, were chosen for that purpose. We were successful in regenerating plantlets from stem and petiole explants from all three chosen species using a four-step simple procedure. The first step was callus induction when the explants were exposed to an auxin-rich medium for 0-20 days. During the second step, they were transferred onto a cytokinin-rich medium for shoot bud induction. In the third step, the shoots regenerated were transferred onto a medium with reduced levels of cytokinins to promote shoot proliferation and elongation; finally, in the fourth step, the shoots were rooted and acclimated. A short period (6-10 days) of time of exposure to auxin was sufficient for shoot regeneration. A culture time longer than ten days in callus induction medium drastically reduced the efficiency of shoot regeneration. Besides, cytokinin type and concentration also affected the frequency of shoot induction. A 0.2 mg/l concentration of 2,4-D for callus induction followed by 0.02 mg/l of Thidiazuron for shoot formation proved to be the best treatment for adventitious shoot bud multiplication, generating a maximum of 10-13 shoots of P. balsamifera and P. angustifolia in ten weeks. In contrast, for P. deltoids, a combination of 1.1mg/l 2,4-D, 1.0mg/l NAA, 0.1mg/l zeatin for callus induction followed by a combination of 1mg/l zeatin plus 1.0mg/l BA for shoot bud induction was found to be the most effective, generating on average 15 shoots over a period of ten weeks.


Assuntos
Citocininas/farmacologia , Ácidos Indolacéticos/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Brotos de Planta/fisiologia , Populus/fisiologia , Regeneração/efeitos dos fármacos , Regeneração/fisiologia , Especificidade da Espécie , Fatores de Tempo
8.
Plant Physiol ; 154(3): 1415-27, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20817752

RESUMO

Plant development consists of the initial phase of intensive cell division followed by continuous genome endoreduplication, cell growth, and elongation. The maintenance of genome stability under these conditions is the main task performed by DNA repair and genome surveillance mechanisms. Our previous work showed that the rate of homologous recombination repair in older plants decreases. We hypothesized that this age-dependent decrease in the recombination rate is paralleled with other changes in DNA repair capacity. Here, we analyzed microsatellite stability using transgenic Arabidopsis (Arabidopsis thaliana) plants that carry the nonfunctional ß-glucuronidase gene disrupted by microsatellite repeats. We found that microsatellite instability increased dramatically with plant age. We analyzed the contribution of various mechanisms to microsatellite instability, including replication errors and mistakes of DNA repair mechanisms such as mismatch repair, excision repair, and strand break repair. Analysis of total DNA polymerase activity using partially purified protein extracts showed an age-dependent decrease in activity and an increase in fidelity. Analysis of the steady-state RNA level of DNA replicative polymerases α, δ, Pol I-like A, and Pol I-like B and the expression of mutS homolog 2 (Msh2) and Msh6 showed an age-dependent decrease. An in vitro repair assay showed lower efficiency of nonhomologous end joining in older plants, paralleled by an increase in Ku70 gene expression. Thus, we assume that the more frequent involvement of nonhomologous end joining in strand break repair and the less efficient end-joining repair together with lower levels of mismatch repair activities may be the main contributors to the observed age-dependent increase in microsatellite instability.


Assuntos
Arabidopsis/genética , Reparo do DNA , Instabilidade de Microssatélites , Arabidopsis/enzimologia , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , DNA de Plantas/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Regulação da Expressão Gênica de Plantas , Repetições de Microssatélites , Mutação , Plantas Geneticamente Modificadas/genética , Fatores de Tempo
9.
Biotechnol J ; 2(8): 1026-32, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17582823

RESUMO

Fast-growing callus, cell suspension and root cultures of Vernonia cinerea, a medicinal plant, were analyzed for the presence of alkaloids. Callus and root cultures were established from young leaf explants in Murashige and Skoog (MS) basal media supplemented with combinations of auxins and cytokinins, whereas cell suspension cultures were established from callus cultures. Maximum biomass of callus, cell suspension and root cultures were obtained in the medium supplemented with 1 mg/L alpha-naphthaleneacetic acid (NAA) and 5 mg/L benzylaminopurine (BA), 1.0 mg/L NAA and 0.1 mg/L BA and 1.5 mg/L NAA, respectively. The 5-week-old callus cultures resulted in maximum biomass and alkaloid contents (750 microg/g). Cell suspension growth and alkaloid contents were maximal in 20-day-old cultures and alkaloid contents were 1.15 mg/g. A 0.2-g sample of root tissue regenerated in semi-solid medium upon transfer to liquid MS medium containing 1.5 mg/L NAA regenerated a maximum increase in biomass of 6.3-fold over a period of 5 weeks. The highest root growth and alkaloid contents of 2 mg/g dry weight were obtained in 5-week-old cultures. Maximum alkaloid contents were obtained in root cultures in vitro compared to all others including the alkaloid content of in vivo obtained with aerial parts and roots (800 microg/g and 1.2 mg/g dry weight, respectively) of V. cinerea.


Assuntos
Agricultura/métodos , Alcaloides/metabolismo , Técnicas de Cultura de Células/métodos , Raízes de Plantas/metabolismo , Vernonia/metabolismo , Células Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...