Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(14): 146201, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38640387

RESUMO

A surface photovoltage (SPV) is observed whenever a doped semiconductor with non-negligible band bending is illuminated by light and charge carriers are excited across the band gap. The sign of the SPV depends on the nature of the doping, the amplitude of the SPV increases with the fluence of the light illumination up to a saturation value, which is determined by the doping concentration. We have investigated Si(100) samples with well-characterized doping levels over a wide range of illumination fluences. Surprisingly, the sign of the SPV upon illumination with 532 nm photons reverses for some p-doping concentrations at high fluences. This is a new effect associated with a crossover between electronic excitations in the bulk and at the surface of the semiconductor.

2.
J Phys Chem Lett ; 12(49): 11951-11959, 2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34881908

RESUMO

A prerequisite for advancing hybrid solar light harvesting systems is a comprehensive understanding of the spatiotemporal dynamics of photoinduced interfacial charge separation. Here, we demonstrate access to this transient charge redistribution for a model hybrid system of nanoporous zinc oxide (ZnO) and ruthenium bipyridyl chromophores. The site-selective probing of the molecular electron donor and semiconductor acceptor by time-resolved X-ray photoemission provides direct insight into the depth distribution of the photoinjected electrons and their interaction with the local band structure on a nanometer length scale. Our results show that these electrons remain localized within less than 6 nm from the interface, due to enhanced downward band bending by the photoinjected charge carriers. This spatial confinement suggests that light-induced charge generation and transport in nanoscale ZnO photocatalytic devices proceeds predominantly within the defect-rich surface region, which may lead to enhanced surface recombination and explain their lower performance compared to titanium dioxide (TiO2)-based systems.

3.
Struct Dyn ; 8(4): 044301, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34258326

RESUMO

We present a novel technique to monitor dynamics in interfacial systems through temporal correlations in x-ray photoelectron spectroscopy (XPS) signals. To date, the vast majority of time-resolved x-ray spectroscopy techniques rely on pump-probe schemes, in which the sample is excited out of equilibrium by a pump pulse, and the subsequent dynamics are monitored by probe pulses arriving at a series of well-defined delays relative to the excitation. By definition, this approach is restricted to processes that can either directly or indirectly be initiated by light. It cannot access spontaneous dynamics or the microscopic fluctuations of ensembles in chemical or thermal equilibrium. Enabling this capability requires measurements to be performed in real (laboratory) time with high temporal resolution and, ultimately, without the need for a well-defined trigger event. The time-correlation XPS technique presented here is a first step toward this goal. The correlation-based technique is implemented by extending an existing optical-laser pump/multiple x-ray probe setup by the capability to record the kinetic energy and absolute time of arrival of every detected photoelectron. The method is benchmarked by monitoring energy-dependent, periodic signal modulations in a prototypical time-resolved XPS experiment on photoinduced surface-photovoltage dynamics in silicon, using both conventional pump-probe data acquisition, and the new technique based on laboratory time. The two measurements lead to the same result. The findings provide a critical milestone toward the overarching goal of studying equilibrium dynamics at surfaces and interfaces through time correlation-based XPS measurements.

4.
Nat Commun ; 12(1): 1196, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33608532

RESUMO

The ultrafast dynamics of photon-to-charge conversion in an organic light-harvesting system is studied by femtosecond time-resolved X-ray photoemission spectroscopy (TR-XPS) at the free-electron laser FLASH. This novel experimental technique provides site-specific information about charge separation and enables the monitoring of free charge carrier generation dynamics on their natural timescale, here applied to the model donor-acceptor system CuPc:C60. A previously unobserved channel for exciton dissociation into mobile charge carriers is identified, providing the first direct, real-time characterization of the timescale and efficiency of charge generation from low-energy charge-transfer states in an organic heterojunction. The findings give strong support to the emerging realization that charge separation even from energetically disfavored excitonic states is contributing significantly, indicating new options for light harvesting in organic heterojunctions.

5.
J Phys Chem Lett ; 11(14): 5476-5481, 2020 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-32545961

RESUMO

Progress in the development of plasmon-enabled light-harvesting technologies requires a better understanding of their fundamental operating principles and current limitations. Here, we employ picosecond time-resolved X-ray photoemission spectroscopy to investigate photoinduced electron transfer in a plasmonic model system composed of 20 nm sized gold nanoparticles (NPs) attached to a nanoporous film of TiO2. The measurement provides direct, quantitative access to transient local charge distributions from the perspectives of the electron donor (AuNP) and the electron acceptor (TiO2). On average, approximately two electrons are injected per NP, corresponding to an electron injection yield per absorbed photon of 0.1%. Back electron transfer from the perspective of the electron donor is dominated by a fast recombination channel proceeding on a time scale of 60 ± 10 ps and a minor contribution that is completed after ∼1 ns. The findings provide a detailed picture of photoinduced charge carrier generation in this NP-semiconductor junction, with important implications for understanding achievable overall photon-to-charge conversion efficiencies.

6.
Phys Rev Lett ; 124(21): 215301, 2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32530661

RESUMO

The angular momentum of rotating superfluid droplets originates from quantized vortices and capillary waves, the interplay between which remains to be uncovered. Here, the rotation of isolated submicrometer superfluid ^{4}He droplets is studied by ultrafast x-ray diffraction using a free electron laser. The diffraction patterns provide simultaneous access to the morphology of the droplets and the vortex arrays they host. In capsule-shaped droplets, vortices form a distorted triangular lattice, whereas they arrange along elliptical contours in ellipsoidal droplets. The combined action of vortices and capillary waves results in droplet shapes close to those of classical droplets rotating with the same angular velocity. The findings are corroborated by density functional theory calculations describing the velocity fields and shape deformations of a rotating superfluid cylinder.

9.
Faraday Discuss ; 216(0): 414-433, 2019 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-31020294

RESUMO

Electronic and lattice contributions to picosecond time-resolved X-ray absorption spectra (trXAS) of CuO at the oxygen K-edge are analyzed by comparing trXAS spectra, recorded using excitation wavelengths of 355 nm and 532 nm, to steady-state, temperature-dependent XAS measurements. The trXAS spectra at pump-probe time-delays ≥150 ps are dominated by lattice heating effects. Insight into the temporal evolution of lattice temperature profiles on timescales up to 100s of nanoseconds after laser excitation are reported, on an absolute temperature scale, with a temporal sensitivity and a spatial selectivity on the order of 10s of picoseconds and 10s of nanometers, respectively, effectively establishing an "ultrafast thermometer". In particular, for the 532 nm experiment at ∼5 mJ cm-2 fluence, both the initial sample temperature and its dynamic evolution are well captured by a one-dimensional thermal energy deposition and diffusion model. The thermal conductivity k = (1.3 ± 0.4) W m-1 K-1 derived from this model is in good agreement with the literature value for CuO powder, kpowder = 1.013 W m-1 K-1. For 355 nm excitation, a quantitative analysis of the experiments is hampered by the large temperature gradients within the probed sample volume owing to the small UV penetration depth. The impact of the findings on mitigating or utilizing photoinduced lattice temperature changes in future X-ray free electron laser (XFEL) experiments is discussed.

10.
Faraday Discuss ; 194: 659-682, 2016 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-27711854

RESUMO

We present a picosecond time-resolved X-ray absorption spectroscopy (tr-XAS) setup designed for synchrotron-based studies of interfacial photochemical dynamics. The apparatus combines a high power, variable repetition rate picosecond laser system with a time-resolved X-ray fluorescence yield detection technique. Time-tagging of the detected fluorescence signals enables the parallel acquisition of X-ray absorption spectra at a variety of pump-probe delays employing the well-defined time structure of the X-ray pulse trains. The viability of the setup is demonstrated by resolving dynamic changes in the fine structure near the O1s X-ray absorption edge of cuprous oxide (Cu2O) after photo-excitation with a 355 nm laser pulse. Two distinct responses are detected. A pronounced, quasi-static, reversible change of the Cu2O O1s X-ray absorption spectrum by up to ∼30% compared to its static line shape corresponds to a redshift of the absorption edge by ∼1 eV. This value is small compared to the 2.2 eV band gap of Cu2O but in agreement with previously published results. The lifetime of this effect exceeds the laser pulse-to-pulse period of 8 µs, resulting in a quasi-static spectral change that persists as long as the sample is exposed to the laser light, and completely vanishes once the laser is blocked. Additionally, a short-lived response corresponding to a laser-induced shift of the main absorption line by ∼2 eV to lower energies appears within <200 ps and decays with a characteristic timescale of 43 ± 5 ns. Both the picosecond rise and nanosecond decay of this X-ray response are simultaneously captured by making use of a time-tagging approach - highlighting the prospects of the experimental setup for efficient probing of the electronic and structural dynamics in photocatalytic systems on multiple timescales.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...