Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 51(19): 10162-10175, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37739408

RESUMO

Determining the repertoire of a microbe's molecular functions is a central question in microbial biology. Modern techniques achieve this goal by comparing microbial genetic material against reference databases of functionally annotated genes/proteins or known taxonomic markers such as 16S rRNA. Here, we describe a novel approach to exploring bacterial functional repertoires without reference databases. Our Fusion scheme establishes functional relationships between bacteria and assigns organisms to Fusion-taxa that differ from otherwise defined taxonomic clades. Three key findings of our work stand out. First, bacterial functional comparisons outperform marker genes in assigning taxonomic clades. Fusion profiles are also better for this task than other functional annotation schemes. Second, Fusion-taxa are robust to addition of novel organisms and are, arguably, able to capture the environment-driven bacterial diversity. Finally, our alignment-free nucleic acid-based Siamese Neural Network model, created using Fusion functions, enables finding shared functionality of very distant, possibly structurally different, microbial homologs. Our work can thus help annotate functional repertoires of bacterial organisms and further guide our understanding of microbial communities.


Assuntos
Bactérias , Bactérias/citologia , Bactérias/genética , Bases de Dados Factuais , Microbiota , Filogenia , RNA Ribossômico 16S/genética , Fenômenos Fisiológicos Bacterianos
2.
Sci Adv ; 8(2): eabj3984, 2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35030025

RESUMO

Biological redox reactions drive planetary biogeochemical cycles. Using a novel, structure-guided sequence analysis of proteins, we explored the patterns of evolution of enzymes responsible for these reactions. Our analysis reveals that the folds that bind transition metal­containing ligands have similar structural geometry and amino acid sequences across the full diversity of proteins. Similarity across folds reflects the availability of key transition metals over geological time and strongly suggests that transition metal­ligand binding had a small number of common peptide origins. We observe that structures central to our similarity network come primarily from oxidoreductases, suggesting that ancestral peptides may have also facilitated electron transfer reactions. Last, our results reveal that the earliest biologically functional peptides were likely available before the assembly of fully functional protein domains over 3.8 billion years ago.Thus, life is a special, very complex form of motion of matter, but this form did not always exist, and it is not separated from inorganic nature by an impassable abyss; rather, it arose from inorganic nature as a new property in the process of evolution of the world. We must study the history of this evolution if we want to solve the problem of the origin of life. [A. I. Oparin (1)]

3.
Front Mol Biosci ; 8: 635382, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33816556

RESUMO

Non-synonymous Single Nucleotide Variants (nsSNVs), resulting in single amino acid variants (SAVs), are important drivers of evolutionary adaptation across the tree of life. Humans carry on average over 10,000 SAVs per individual genome, many of which likely have little to no impact on the function of the protein they affect. Experimental evidence for protein function changes as a result of SAVs remain sparse - a situation that can be somewhat alleviated by predicting their impact using computational methods. Here, we used SNAP to examine both observed and in silico generated human variation in a set of 1,265 proteins that are consistently found across a number of diverse species. The number of SAVs that are predicted to have any functional effect on these proteins is smaller than expected, suggesting sequence/function optimization over evolutionary timescales. Additionally, we find that only a few of the yet-unobserved SAVs could drastically change the function of these proteins, while nearly a quarter would have only a mild functional effect. We observed that variants common in the human population localized to less conserved protein positions and carried mild to moderate functional effects more frequently than rare variants. As expected, rare variants carried severe effects more frequently than common variants. In line with current assumptions, we demonstrated that the change of the human reference sequence amino acid to the reference of another species (a cross-species variant) is unlikely to significantly impact protein function. However, we also observed that many cross-species variants may be weakly non-neutral for the purposes of quick adaptation to environmental changes, but may not be identified as such by current state-of-the-art methodology.

4.
Biol Direct ; 14(1): 19, 2019 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-31666099

RESUMO

BACKGROUND: Accumulating evidence suggests that the human microbiome impacts individual and public health. City subway systems are human-dense environments, where passengers often exchange microbes. The MetaSUB project participants collected samples from subway surfaces in different cities and performed metagenomic sequencing. Previous studies focused on taxonomic composition of these microbiomes and no explicit functional analysis had been done till now. RESULTS: As a part of the 2018 CAMDA challenge, we functionally profiled the available ~ 400 subway metagenomes and built predictor for city origin. In cross-validation, our model reached 81% accuracy when only the top-ranked city assignment was considered and 95% accuracy if the second city was taken into account as well. Notably, this performance was only achievable if the similarity of distribution of cities in the training and testing sets was similar. To assure that our methods are applicable without such biased assumptions we balanced our training data to account for all represented cities equally well. After balancing, the performance of our method was slightly lower (76/94%, respectively, for one or two top ranked cities), but still consistently high. Here we attained an added benefit of independence of training set city representation. In testing, our unbalanced model thus reached (an over-estimated) performance of 90/97%, while our balanced model was at a more reliable 63/90% accuracy. While, by definition of our model, we were not able to predict the microbiome origins previously unseen, our balanced model correctly judged them to be NOT-from-training-cities over 80% of the time. Our function-based outlook on microbiomes also allowed us to note similarities between both regionally close and far-away cities. Curiously, we identified the depletion in mycobacterial functions as a signature of cities in New Zealand, while photosynthesis related functions fingerprinted New York, Porto and Tokyo. CONCLUSIONS: We demonstrated the power of our high-speed function annotation method, mi-faser, by analysing ~ 400 shotgun metagenomes in 2 days, with the results recapitulating functional signals of different city subway microbiomes. We also showed the importance of balanced data in avoiding over-estimated performance. Our results revealed similarities between both geographically close (Ofa and Ilorin) and distant (Boston and Porto, Lisbon and New York) city subway microbiomes. The photosynthesis related functional signatures of NYC were previously unseen in taxonomy studies, highlighting the strength of functional analysis.


Assuntos
Metagenoma , Microbiota , Ferrovias , Cidades
5.
Bioinformatics ; 34(13): i304-i312, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29950013

RESUMO

Motivation: The rapid drop in sequencing costs has produced many more (predicted) protein sequences than can feasibly be functionally annotated with wet-lab experiments. Thus, many computational methods have been developed for this purpose. Most of these methods employ homology-based inference, approximated via sequence alignments, to transfer functional annotations between proteins. The increase in the number of available sequences, however, has drastically increased the search space, thus significantly slowing down alignment methods. Results: Here we describe homology-derived functional similarity of proteins (HFSP), a novel computational method that uses results of a high-speed alignment algorithm, MMseqs2, to infer functional similarity of proteins on the basis of their alignment length and sequence identity. We show that our method is accurate (85% precision) and fast (more than 40-fold speed increase over state-of-the-art). HFSP can help correct at least a 16% error in legacy curations, even for a resource of as high quality as Swiss-Prot. These findings suggest HFSP as an ideal resource for large-scale functional annotation efforts. Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Algoritmos , Biologia Computacional , Anotação de Sequência Molecular , Proteínas , Sequência de Aminoácidos , Biologia Computacional/métodos , Bases de Dados de Proteínas , Anotação de Sequência Molecular/métodos , Proteínas/química , Alinhamento de Sequência
6.
Nucleic Acids Res ; 46(D1): D535-D541, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29112720

RESUMO

Microbial functional diversification is driven by environmental factors, i.e. microorganisms inhabiting the same environmental niche tend to be more functionally similar than those from different environments. In some cases, even closely phylogenetically related microbes differ more across environments than across taxa. While microbial similarities are often reported in terms of taxonomic relationships, no existing databases directly link microbial functions to the environment. We previously developed a method for comparing microbial functional similarities on the basis of proteins translated from their sequenced genomes. Here, we describe fusionDB, a novel database that uses our functional data to represent 1374 taxonomically distinct bacteria annotated with available metadata: habitat/niche, preferred temperature, and oxygen use. Each microbe is encoded as a set of functions represented by its proteome and individual microbes are connected via common functions. Users can search fusionDB via combinations of organism names and metadata. Moreover, the web interface allows mapping new microbial genomes to the functional spectrum of reference bacteria, rendering interactive similarity networks that highlight shared functionality. fusionDB provides a fast means of comparing microbes, identifying potential horizontal gene transfer events, and highlighting key environment-specific functionality.


Assuntos
Bases de Dados Factuais , Microbiota/fisiologia , Bactérias/classificação , Bactérias/genética , Fenômenos Fisiológicos Bacterianos , Proteínas de Bactérias/genética , Proteínas de Bactérias/fisiologia , Biodiversidade , Bases de Dados Genéticas , Microbiologia Ambiental , Transferência Genética Horizontal , Humanos , Internet , Metadados , Metagenômica , Filogenia , Synechococcus/classificação , Synechococcus/genética , Synechococcus/fisiologia , Interface Usuário-Computador
8.
Sci Rep ; 7(1): 1608, 2017 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-28487536

RESUMO

Any two unrelated individuals differ by about 10,000 single amino acid variants (SAVs). Do these impact molecular function? Experimental answers cannot answer comprehensively, while state-of-the-art prediction methods can. We predicted the functional impacts of SAVs within human and for variants between human and other species. Several surprising results stood out. Firstly, four methods (CADD, PolyPhen-2, SIFT, and SNAP2) agreed within 10 percentage points on the percentage of rare SAVs predicted with effect. However, they differed substantially for the common SAVs: SNAP2 predicted, on average, more effect for common than for rare SAVs. Given the large ExAC data sets sampling 60,706 individuals, the differences were extremely significant (p-value < 2.2e-16). We provided evidence that SNAP2 might be closer to reality for common SAVs than the other methods, due to its different focus in development. Secondly, we predicted significantly higher fractions of SAVs with effect between healthy individuals than between species; the difference increased for more distantly related species. The same trends were maintained for subsets of only housekeeping proteins and when moving from exomes of 1,000 to 60,000 individuals. SAVs frozen at speciation might maintain protein function, while many variants within a species might bring about crucial changes, for better or worse.


Assuntos
Variação Genética , Humanos , Mutação/genética , Proteoma/metabolismo , Software
9.
PLoS Comput Biol ; 12(8): e1005047, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27536940

RESUMO

Developments in experimental and computational biology are advancing our understanding of how protein sequence variation impacts molecular protein function. However, the leap from the micro level of molecular function to the macro level of the whole organism, e.g. disease, remains barred. Here, we present new results emphasizing earlier work that suggested some links from molecular function to disease. We focused on non-synonymous single nucleotide variants, also referred to as single amino acid variants (SAVs). Building upon OMIA (Online Mendelian Inheritance in Animals), we introduced a curated set of 117 disease-causing SAVs in animals. Methods optimized to capture effects upon molecular function often correctly predict human (OMIM) and animal (OMIA) Mendelian disease-causing variants. We also predicted effects of human disease-causing variants in the mouse model, i.e. we put OMIM SAVs into mouse orthologs. Overall, fewer variants were predicted with effect in the model organism than in the original organism. Our results, along with other recent studies, demonstrate that predictions of molecular effects capture some important aspects of disease. Thus, in silico methods focusing on the micro level of molecular function can help to understand the macro system level of disease.


Assuntos
Biologia Computacional/métodos , Predisposição Genética para Doença/genética , Polimorfismo de Nucleotídeo Único/genética , Proteínas/genética , Animais , Bases de Dados de Proteínas , Modelos Animais de Doenças , Humanos , Camundongos
10.
BMC Bioinformatics ; 14 Suppl 3: S7, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23514582

RESUMO

BACKGROUND: Any method that de novo predicts protein function should do better than random. More challenging, it also ought to outperform simple homology-based inference. METHODS: Here, we describe a few methods that predict protein function exclusively through homology. Together, they set the bar or lower limit for future improvements. RESULTS AND CONCLUSIONS: During the development of these methods, we faced two surprises. Firstly, our most successful implementation for the baseline ranked very high at CAFA1. In fact, our best combination of homology-based methods fared only slightly worse than the top-of-the-line prediction method from the Jones group. Secondly, although the concept of homology-based inference is simple, this work revealed that the precise details of the implementation are crucial: not only did the methods span from top to bottom performers at CAFA, but also the reasons for these differences were unexpected. In this work, we also propose a new rigorous measure to compare predicted and experimental annotations. It puts more emphasis on the details of protein function than the other measures employed by CAFA and may best reflect the expectations of users. Clearly, the definition of proper goals remains one major objective for CAFA.


Assuntos
Proteínas/fisiologia , Homologia de Sequência de Aminoácidos , Algoritmos , Proteínas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...