Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioinform Biol Insights ; 16: 11779322221115547, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35966807

RESUMO

LHPP gene encodes a phospholysine phosphohistidine inorganic pyrophosphate phosphatase, which functions as a tumor-suppressor protein. The tumor suppression by this protein has been confirmed in various cancers, including hepatocellular carcinoma (HCC). LHPP downregulation promotes cell growth and proliferation by modulating the PI3K/AKT signaling pathway. This study identifies potentially deleterious missense single nucleotide variants (SNVs) associated with the LHPP gene using multiple computational tools based on different algorithms. A total of 4 destabilizing mutants are identified as L22P, I212T, G227R, and G236R, from the conserved region of the phosphatase. The 3-dimensional (3D) modeling and structural comparison of variants with the native protein reveals significant structural and conformational variations after mutations, suggesting disruption in the function of phospholysine phosphohistidine inorganic pyrophosphate phosphatase. The identified mutations might, therefore, participate in the cause of HCC.

2.
Proteins ; 90(7): 1425-1433, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35170816

RESUMO

Protein engineering and enzyme immobilization strategies have produced numerous biocatalysts for modern industrial applications. In this study, we have also used these two strategies for improving the operational stability and catalytic efficiency of serine protease from Pseudomonas aeruginosa. The enzyme serine protease was truncated to separate its trypsin-like domain from the PDZ1 and PDZ2 domains. The truncated trypsin-like domain was expressed in Escherichia coli BL21, and its catalytic activity and thermostability were estimated. Later this trypsin-like domain was immobilized with 2% Na-alginate. The immobilized domain showed 10°C increase in optimum temperature compared to its free counterpart. Kinetic studies showed two-folds increased Vmax of the immobilized domain. Likewise, the Km value of this domain was 11.5 folds lower compared to the free trypsin-like domain. The catalytic efficiency (Kcat /Km ) of the immobilized enzyme also elevated to 311 folds. Additionally, the immobilized trypsin-like domain remained active in the presence of surfactants (Triton-X 100, SDS, and Tween-40) and metal ions (Mg2+ , Ca2+ , Na+ , and Zn2+ ). It also efficiently removes gelatin layer from X-ray film and hair from sheepskin. Thus, the immobilized trypsin-like domain of serine protease, with increased thermostability and catalytic efficiency, is operationally more stable than the soluble truncated trypsin-like domain.


Assuntos
Pseudomonas aeruginosa , Serina Proteases , Estabilidade Enzimática , Enzimas Imobilizadas/genética , Enzimas Imobilizadas/metabolismo , Concentração de Íons de Hidrogênio , Cinética , Pseudomonas aeruginosa/metabolismo , Serina Proteases/genética , Serina Proteases/metabolismo , Temperatura , Tripsina/metabolismo
3.
Expert Opin Biol Ther ; 21(11): 1525-1533, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34547976

RESUMO

OBJECTIVES: The design of peptide-based vaccines for cancer is a promising immunotherapy that can induce a cancer-specific cytotoxic response in tumor cells. METHODS: Herein, we used the immunoinformatic approach in designing a multi-epitope vaccine targeting G-protein coupled receptor 87 (GPCR-87), cystine/glutamate transporter (SLC7A11), Immunoglobulin binding protein 1 (IGBP1), and thioredoxin domain-containing protein 5 (TXNDC5), which can potentially contribute to NSCLC. The MHC-I and MHC-II epitopes selected for the fusion construct were evaluated for their antigenic and non-allergenic natures via VaxiJen and AllerTop. RESULTS: A total of five epitopes, four class-I (FIFYLKNIV, CRYTSVLFY, RYLKVVKPF, and RQAKIQRYK), and one class-II (NQVRGYPTLLWFRDG), having combined USA population coverage of 100%, were used to make ten possible multi-epitope fusion constructs. In these constructs, PADRE, a universal T-helper epitope, and RSO9, a TLR4 agonist, were fused as adjuvants. The molecular docking analysis revealed that two constructs were showing significant binding affinities toward HLA-A*02:01, the most prevalent HLA allele in USA. Moreover, MD simulations marked one construct as a promising therapeutic candidate. CONCLUSION: The multi-epitope vaccine constructs designed using immunogenic, and non-allergenic peptides of NSCLS tumor-associated proteins are likely to pose significant therapeutic efficacies in cancer immunotherapy due to their high binding affinities toward HLA molecules.


Assuntos
Vacinas Anticâncer/imunologia , Carcinoma Pulmonar de Células não Pequenas , Antígenos HLA , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/terapia , Biologia Computacional , Epitopos de Linfócito B , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Simulação de Acoplamento Molecular , Estados Unidos , Vacinas de Subunidades Antigênicas
4.
Int J Pept Res Ther ; 27(1): 597-614, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32922244

RESUMO

Tuberculosis (TB), a chronic disease caused by Mycobacterium tuberculosis (Mtb), is a global health issue across the world. Pakistan ranks fifth among the countries, which are facing, a significantly great number of mortalities and morbidities due to TB. Unfortunately, all previously reported treatments are not successful for the eradication of TB. Here in this study, we report an emerging treatment option for this disease. We have applied immunoinformatics to predict highly conserved B and T-cell epitopes from Mtb, showing significant binding affinities to the frequent HLA alleles in the Pakistani population. A total of ten highly referenced and experimentally validated epitopes were selected from the Immune Epitope Database (IEDB), followed by their conservancy analysis using weblogos. The consensus sequences and variants derived from these sequences were examined, for their binding affinities, with prevalent HLA alleles of Pakistan. Moreover, the antigenic and allergenic natures of these peptides were also evaluated via Vaxijen and AllerTOP, respectively. Consequently, all potentially allergenic and non-antigenic, peptide fragments, were excluded from the analysis. Among all putative epitopes, three CD8 + T-cell epitopes were selected, as ideal vaccine candidates and, population coverage analysis revealed that the combination of these three peptides was covering, 67.28% Pakistani Asian and 57.15% mixed Pakistani populations. Likewise, eleven linear and six conformational or discontinuous B-cell epitopes were also marked as potential vaccine candidates based on their prediction score, non-allergenic nature, and antigenic properties. These epitopes, however, need the final validation via wet-lab studies. After their approval, these epitopes would be effective candidates for the future designing of epitope-based vaccines against Mtb infections in Pakistan.

5.
Microbiol Immunol ; 65(4): 154-160, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33295677

RESUMO

Currently, the whole world is facing the coronavirus disease-19 pandemic. As of now, approximately 0.15 million people around the globe are infected with the novel coronavirus. In the last decade, two strains of the coronavirus family, severe acute respiratory syndrome-related coronavirus and Middle East respiratory syndrome coronavirus, also resulted in epidemics in south Asian and the Middle Eastern countries with high mortality rate. This scenario demands the development of a putative vaccine which may provide immunity against all current and new evolving coronavirus strains. In this study, we designed an epitope-based vaccine using an immunoinformatic approach. This vaccine may protect against all coronavirus strains. The vaccine is developed by considering the geographical distribution of coronavirus strains and host genetics (Chinese population). Nine experimentally validated epitopes sequences from coronavirus strains were used to derive the variants considering the conservancy in all strains. Further, the binding affinities of all derived variants were checked with most abundant human leukocyte antigen alleles in the Chinese population. Three major histocompatibility complex (MHC) Class I epitopes from spike glycoprotein and nucleoprotein showed sufficient binding while one MHC Class II epitope from spike glycoprotein was found to be an effective binder. A cocktail of these epitopes gave more than 95% population coverage in the Chinese population. Moreover, molecular dynamics simulation supported the aforementioned predictions. Further, in vivo studies are needed to confirm the immunogenic potential of these vaccines.


Assuntos
Infecções por Coronavirus/prevenção & controle , Coronavirus/imunologia , Vacinas Virais/imunologia , Alelos , Sequência de Aminoácidos , China , Coronavirus/química , Coronavirus/genética , Infecções por Coronavirus/genética , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Epitopos/química , Epitopos/genética , Epitopos/imunologia , Antígenos HLA/genética , Antígenos HLA/imunologia , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinas Virais/química , Vacinas Virais/genética
6.
Crit Rev Eukaryot Gene Expr ; 30(5): 411-425, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33389878

RESUMO

Pectinase enzymes from different plants have many possible biotechnological applications in various industries. Considering industrial significance of pectinolytic enzymes, the polygalacturonase (PG) gene from grapes was cloned into Escherichia coli DH5α using pTZ57R/T vector. Homologous sequences established a close link to Vitis vinifera. Conserve domain analysis predicted PLN02218 domain belongs to the cl31843 superfamily, showing its function as polygalacturonase. After confirmation by PCR and restriction analysis, the PG gene was expressed in E. coli BL21 and induced by IPTG. Expression level was assessed by 12% SDS-PAGE, which showed a 47 kDa protein. High expression level in the soluble fraction indicated that the protein is intracellular or transmembrane. Maximum expression was obtained with 1 mM IPTG and 6 hour induction time, and autoinduction with lactose increased production of the recombinant enzyme. Zymogram analysis revealed that the induced protein was an active enzyme. Expressed PG showed pectinolytic effect on the physiochemical properties of lemon juice. Natural biopolymers are greatly needed because synthetic fibers can negatively affect health. Pectin hydrolysis of banana pseudostem by the PG enzyme produced better quality fiber. Morphological studies by scanning electron microscopy revealed pectin degradation within the fiber cell architecture, showing the effectiveness of PG treatment on banana pseudostem.


Assuntos
Poligalacturonase/metabolismo , Vitis/enzimologia , Clonagem Molecular , Eletroforese em Gel de Poliacrilamida , Genes de Plantas , Microscopia Eletrônica de Varredura , Poligalacturonase/genética , Reação em Cadeia da Polimerase , Vitis/genética
7.
Prep Biochem Biotechnol ; 50(3): 281-291, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31718419

RESUMO

The use of interferon α-2 in combination with thymosin α-1 shows higher anti-cancer effect in comparison when both are used individually because of their synergistic effects. In this study we produced an important human interferon α-2-thymosin α-1 (IFNα2-Tα1) fusion protein with probable pharmaceutical properties coupled to its high-level expression, characterization, and study of its biological activity. The IFNα2-Tα1 fusion gene was constructed by over-lap extension PCR and expressed in Escherichia coli expression system. The expression of IFNα2-Tα1 fusion protein was optimized to higher level and its maximum expression was obtained in modified terrific broth medium when lactose was used as inducer. The fusion protein was refolded into its native biologically active form with maximum yield of 83.14% followed by purification with ∼98% purity and 69% final yield. A band of purified IFNα2-Tα1 fusion protein equal to ∼23 kDa was observed on 12 % SDS-PAGE gel. The integrity of IFNα2-Tα1 fusion protein was confirmed by western blot analysis and secondary structure was assessed by CD spectroscopy. When IFNα2-Tα1 fusion protein was subjected to its biological activity analysis it was observed that it exhibits both IFNα2 & Tα1 activities as well as significantly higher anticancer activity as compared to IFNα-2 alone.


Assuntos
Interferon-alfa , Proteínas Recombinantes de Fusão , Timalfasina , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Interferon-alfa/química , Interferon-alfa/genética , Interferon-alfa/isolamento & purificação , Interferon-alfa/farmacologia , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/farmacologia , Timalfasina/química , Timalfasina/genética , Timalfasina/isolamento & purificação , Timalfasina/farmacologia
8.
Mol Biol Rep ; 46(4): 3651-3662, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31079316

RESUMO

Increased demand of enzymes for industrial use has led the scientists towards protein engineering techniques. In different protein engineering strategies, rational approach has emerged as the most efficient method utilizing bioinformatics tools to produce enzymes with desired reaction kinetics; physiochemical (temperature, pH, half life, etc) and biological (selectivity, specificity, etc.) characteristics. Xylanase is one of the widely used enzymes in paper and food industry to degrade xylan component present in plant pulp. In this study endo 1,4-ß-xylanase (Xyl-11A) from Bacillus halodurans C-125 was cloned in pET-22b (+) vector and expressed in Escherichia coli BL21 (DE3) expression strain. The enzyme had Michaelis constant Km of 1.32 mg ml-1 birchwoodxylan (soluble form) and maximum reaction velocity (Vmax) 73.53 mmol min-1 mg-1 with an optimum temperature of 75 °C and pH 9.0. The thermostability analysis showed that enzyme retained more than 80% of its residual activity when incubated at 75 °C for 2 h. In addition, to increase Xyl-11A thermostability, an in-silico analysis was performedto identify the hot spot amino acid residues. Consensus-based amino acid substitution was applied to evaluate multiple sequence alignment of homologs and identified 20 amino acids positions by following Jensen-Shnnon Divergence method. 3D models of 20 selected mutants were analyzed for conformational transition in protein structures by using NMSim server. Two selected mutants T6K and I17M of Xyl-11A retained 40, 60% residual activity respectively, at 85 °C for 120 min as compared to wild type enzyme which retained 37% initial activity under same conditions, confirming the enhanced thermostability of mutants. The present study showed a good approach for the identification of promising amino acid residues responsible for enhancing the thermostability of enzymes of industrial importance.


Assuntos
Bacillus/enzimologia , Endo-1,4-beta-Xilanases/genética , Aminoácidos , Bacillus/genética , Sequência de Bases/genética , Clonagem Molecular , Simulação por Computador , Endo-1,4-beta-Xilanases/química , Endo-1,4-beta-Xilanases/isolamento & purificação , Endo-1,4-beta-Xilanases/metabolismo , Estabilidade Enzimática/genética , Cinética , Modelos Moleculares , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Engenharia de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Temperatura
9.
Mol Cell Probes ; 43: 40-44, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30502387

RESUMO

Gonorrheal infections are the second most prevalent sexually transmitted diseases STDs in the USA populations after Chlamydia. These infections have now become an urgent problem to address because Neisseria gonorrhoeae is capable of developing resistance to multiple antibiotic classes. Infection with these antibiotic-resistant strains has become the major public health concern. Although extensive researches are ongoing to control its transmission and to develop the productive treatments against this pathogen, no effective vaccine could develop till now. The present study will effectively contribute to the future designing of USA specific epitope-based vaccines. Through computational approaches, this study has highlighted putative epitopes from Neisseria gonorrhoeae which restrict maximally to the frequent HLA alleles in the USA populations. Antigenic and non-allergenic nature of predicted epitopes was verified using vexijen and AllerTOP tools respectively. Total seven epitopes, four from class-I and three from class-II were antigenic as well as non-allergenic. These epitopes showed USA population coverage of 99.3% with no allergenic response. Still, additional studies are needed to validate the immunogenic properties of the predicted epitopes which are likely vaccine target for gonorrhoea in the USA populations.


Assuntos
Biologia Computacional/métodos , Epitopos/imunologia , Antígenos HLA/imunologia , Neisseria gonorrhoeae/imunologia , Alelos , Sequência de Aminoácidos , Epitopos/química , Humanos , Estados Unidos
10.
Infect Genet Evol ; 43: 58-66, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27166094

RESUMO

Mounting burden of HCV-infected individuals and soaring cost of treatment is a serious source of unease for developing countries. Numbers of various approaches have been anticipated to develop a vaccine against HCV but the majority of them proved ineffective. Development of vaccine by considering geographical distribution of HCV genotypes and host genetics shows potential. In this research article, we have tried to predict most putative HCV epitopes which are efficiently restricted by most common HLA alleles in Pakistani population through different computational algorithms. Thirteen selected, experimentally identified epitopes sequences were used to derived consensus sequences in all genotypes of HCV. Obtained consensus sequences were used to predict their binding affinities with most prevalent HLA alleles in Pakistani population. Two Class-I epitopes from NS4B region, one from Class-I epitope from NS5A and one Class-II epitope from NS3 region showed effective binding and proved to be highly putative to boost immune response. A cocktail of these four have been checked for population coverage and they gave 75.53% for Pakistani Asian and 70.77% for Pakistani Mixed populations with no allergenic response. Computational algorithms are robust way to shortlist potential candidate epitopes for vaccine development but further, in vivo and in-vitro studies are required to confirm their immunogenic properties.


Assuntos
Epitopos de Linfócito T/genética , Antígenos HLA/química , Hepacivirus/genética , Vacinas/imunologia , Algoritmos , Simulação por Computador , Sequência Consenso , Epitopos de Linfócito T/imunologia , Genótipo , Antígenos HLA/imunologia , Hepacivirus/imunologia , Humanos , Paquistão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...