Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 332
Filtrar
1.
J Pediatr Surg ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38692944

RESUMO

BACKGROUND: Pediatric surgeons have faced esophageal reconstruction challenges for decades owing to a variety of congenital and acquired conditions. This work aimed to introduce a reproducible and efficient approach for creating tissue-engineered esophageal tissue using bone marrow mesenchymal stem cells (BMSCs) cultured in preconditioned mediums seeded on a sheep decellularized tunica vaginalis (DTV) scaffold for partial reconstruction of a rabbit's esophagus. METHODS: DTV was performed using SDS and Triton X-100 solutions. The decellularized grafts were employed alone (DTV group) or after recellularization with BMSCs cultured for 10 days in preconditioned mediums (RTV group) for reconstructing a 3 cm segmental defect in the cervical esophagus of rabbits (n = 20) after the decellularization process was confirmed. Rabbits were observed for one month, after which they were euthanized, and the reconstructed esophagi were harvested for histological analysis. RESULTS: Six rabbits in the DTV group and eight rabbits in the RTV group survived until the end of the one-month study period. Despite histological examination demonstrating that both grafts completely repaired the esophageal defect, the RTV graft demonstrated a histological structure similar to that of the normal esophagus. The reconstructed esophagi in the RTV group revealed the arrangement of the different layers of the esophageal wall with the formation of newly formed blood vessels and Schwann-like cells. CONCLUSION: DTV xenograft is a novel scaffold that promotes cell adhesion and differentiation and might be effectively utilized for regenerating esophageal tissue, paving the way for future clinical trials in pediatric patients.

2.
Heliyon ; 10(10): e31232, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38813207

RESUMO

Gangetic old alluvial zone in India has conserved many locally adapted aromatic rice landraces. In order to determine the extent of genetic divergence of ten morphological characters, the study was conducted to examine forty-eight aromatic rice genotypes for six Kharif seasons (2016-2021) at the Instructional Farm of Regional Research Station (Old Alluvial Zone), Uttar Banga Krishi Viswavidyalaya, Majhian, West Bengal, India. The experiment was laid out in Randomized Complete Block Design (RCBD) with three replications. A considerable degree of variation was noted for all the traits being investigated. It was found that the total number of tillers per plant, panicle numbers per plant, number of grains per panicle, fertility percentage, test weight, and grain length/breadth ratio had significantly positive correlated with seed yield per plant. Based on D2 analysis values, all the genotypes were grouped into six clusters. Cluster III (Tulaipanji, Patnai, Basmati 1121, Jugal, and Bahurupi) and Cluster VI (Kanakchur), containing genotypes were found most divergent with maximum inter-cluster distance (6941.51). According to the cluster means, Cluster II had the largest intra-cluster distance (1937.52), and important attributes including test weight, number of grains per panicle, seed yield per plant, and fertility percentage made remarkably significant contributions to this cluster. In terms of principal component analysis, maximum variability was found in PC1 (23.88 %), with high positive loading values for tillers per plant (0.459), panicle number per plant (0.441), seed yield per plant (0.408), fertility percentage (0.364), test weight (0.264), and grain length/breadth (L/B) ratio (0.263). On the basis of biplot analysis, four genotypes, namely Shakbhati, Sugandhi, Bahurupi and Kanakchur, were identified as the most divergent types for the yield-attributing traits of aromatic rice. The diverse genotypes could be used as potential donors in future breeding programmes.

3.
PLoS One ; 19(5): e0303264, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38758743

RESUMO

Saffron, the "golden spice" derived from Crocus sativus L., is renowned for its richness in secondary metabolites such as crocin and safranal, contributing to its unique properties. Facing challenges like decreasing global production, optimizing cultivation techniques becomes imperative for enhanced yields. Although the impact of factors like planting density, planting depth, spacing, and corm size on saffron growth has been studied, the interaction between corm size and planting depth remains underexplored. This study systematically investigates the interactive effects of corm size and planting depth on saffron growth and yield, providing evidence-based guidelines for optimizing cultivation. A factorial experiment, employing a completely randomized design, was conducted to assess the influence of corm size (05-10g, 10.1-15g, 15.1-20g) and planting depth (10cm, 15cm, 20cm) on saffron yield. Uniform-sized corms were obtained, and a suitable soil mixture was prepared for cultivation. Morphological and agronomic parameters were measured, and statistical analyses were performed using ANOVA and Tukey's HSD test. The study revealed that planting depth significantly affected saffron emergence. The corms sown under 15cm depth showed 100% emergence regardless of corm size (either 05-10g, 10.1-15g, 15.1-20g) followed by 10cm depth corms. Corm dry weight exhibited a complex interaction, where larger corms benefited from deeper planting, while intermediate-sized corms thrived at shallower depths. Similar patterns were observed in shoot fresh weight and dry weight. Specifically, the largest corm size (t3, 15.1-20g) produced the greatest fresh-weight biomass at the deepest planting depth of 20cm (T3), while intermediate-sized corms (t2, 10.1-15g) were superior at the shallowest 10cm depth (T1). The total plant biomass demonstrated that larger corms excelled in deeper planting, while intermediate-sized corms were optimal at moderate depths. This research highlights the intricate interplay between corm size and planting depth in influencing saffron growth. Larger corms generally promote higher biomass, but the interaction with planting depth is crucial. Understanding these dynamics can aid farmers in tailoring cultivation practices for optimal saffron yields. The study emphasizes the need for a coordinated approach to corm selection and depth placement, providing valuable insights for sustainable saffron production and economic growth.


Assuntos
Crocus , Crocus/crescimento & desenvolvimento , Crocus/metabolismo , Agricultura/métodos , Solo/química , Biomassa , Carotenoides/metabolismo
4.
Heliyon ; 10(10): e31554, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38818181

RESUMO

In recent years, an increase in weed infestation, which is adversely affecting crop growth and productivity has been a major challenge facing the farmers of South Asia. The adoption of a permanent bed in combination with residue retention-based crop management practices may reduce weed abundance and increase crop productivity. In a two-year field study, we evaluated the responses of different organic weed management practices with contrasting tillage and residue (R) management strategies to weed dynamics and crop productivity under rice-maize rotation. The main plot treatments consisted of zero-tillage direct seeded rice and zero-tillage maize (ZTR fb ZTM); ZTDSR and maize both on permanent raised beds with residue (PBDSR + R fb PBDSM + R); PBDSR and PBM without residue (PBDSR-R fb PBDSM-R) and conventional tillage puddled transplanted rice and conventional tillage maize (CTR fb CTM). The subplots comprised unweeded control; vermicompost mulch; P- enriched vermicompost mulch; live mulch with Sesbania spp. in rice and Pisum sativum in maize and weed-free. Total weed density and biomass in rice and maize at 30 days after sowing (DAS) were minimum for PBDSR + R fb PBDSM + R compared to remaining tillage and residue management practices in both years. Apart from weed-free treatment, the highest weed control index was found with live mulch. Yield of rice and maize were found higher in permanent beds along with residue retention-based practices. In rice, the weed-free treatment showed the highest grain yield and live mulch reported 9.8 and 6.8 % higher grain yield than vermicompost mulch and P-enriched vermicompost mulch respectively. Our study shows that conservation agriculture practices under rice-maize rotation is one of the ways to reduce weed density and improve crop productivity in South Asia and other similar agro-ecologies.

5.
BMC Plant Biol ; 24(1): 423, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38760709

RESUMO

BACKGROUND: Soil salinity is one of the major menaces to food security, particularly in dealing with the food demand of the ever-increasing global population. Production of cereal crops such as wheat is severely affected by soil salinity and improper fertilization. The present study aimed to examine the effect of selected microbes and poultry manure (PM) on seedling emergence, physiology, nutrient uptake, and growth of wheat in saline soil. A pot experiment was carried out in research area of Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan. Saline soil (12 dS m- 1 w/w) was developed by spiking using sodium chloride, and used in experiment along with two microbial strains (i.e., Alcaligenes faecalis MH-2 and Achromobacter denitrificans MH-6) and PM. Finally, wheat seeds (variety Akbar-2019) were sown in amended and unamended soil, and pots were placed following a completely randomized design. The wheat crop was harvested after 140 days of sowing. RESULTS: The results showed a 10-39% increase (compared to non-saline control) in agronomic, physiological, and nutritive attributes of wheat plants when augmented with PM and microbes. Microbes together with PM significantly enhanced seedling emergence (up to 38%), agronomic (up to 36%), and physiological (up to 33%) in saline soil as compared to their respective unamended control. Moreover, the co-use of microbes and PM also improved soil's physicochemical attributes and enhanced N (i.e., 21.7%-17.1%), P (i.e., 24.1-29.3%), and K (i.e., 28.7%-25.3%) availability to the plant (roots and shoots, respectively). Similarly, the co-use of amendments also lowered the Na+ contents in soil (i.e., up to 62%) as compared to unamended saline control. This is the first study reporting the effects of the co-addition of newly identified salt-tolerant bacterial strains and PM on seedling emergence, physiology, nutrient uptake, and growth of wheat in highly saline soil. CONCLUSION: Our findings suggest that co-using a multi-trait bacterial culture and PM could be an appropriate option for sustainable crop production in salt-affected soil.


Assuntos
Esterco , Aves Domésticas , Salinidade , Solo , Triticum , Triticum/crescimento & desenvolvimento , Solo/química , Animais , Microbiologia do Solo , Plântula/crescimento & desenvolvimento , Fertilizantes/análise , Alcaligenes faecalis/crescimento & desenvolvimento
6.
Environ Sci Pollut Res Int ; 31(23): 34526-34549, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38709411

RESUMO

Hesperidin (HSP), a flavonoid, is a potent antioxidant, metal chelator, mediator of signaling pathways, and regulator of metal uptake in plants. The study examined the ameliorative effects of HSP (100 µM) on Bassia scoparia grown under excessive levels of heavy metals (zinc (500 mg kg-1), copper (400 mg kg-1), cadmium (100 mg kg-1), and chromium (100 mg kg-1)). The study clarifies the underlying mechanisms by which HSP lessens metabolic mayhem to enhance metal stress tolerance and phytoremediation efficiency of Bassia scoparia. Plants manifested diminished growth because of a drop in chlorophyll content and nutrient acquisition, along with exacerbated deterioration of cellular membranes reflected in elevated reactive oxygen species (ROS) production, lipid peroxidation, and relative membrane permeability. Besides the colossal production of cytotoxic methylglyoxal, the activity of lipoxygenase was also higher in plants under metal toxicity. Conversely, hesperidin suppressed the production of cytotoxic ROS and methylglyoxal. Hesperidin improved oxidative defense that protected membrane integrity. Hesperidin caused a more significant accumulation of osmolytes, non-protein thiols, and phytochelatins, thereby rendering metal ions non-toxic. Hydrogen sulfide and nitric oxide endogenous levels were intricately maintained higher in plants treated with HSP. Hesperidin increased metal accumulation in Bassia scoparia and thereby had the potential to promote the reclamation of metal-contaminated soils.


Assuntos
Biodegradação Ambiental , Hesperidina , Metais Pesados , Metais Pesados/metabolismo , Hesperidina/metabolismo , Redes e Vias Metabólicas/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
7.
Sci Rep ; 14(1): 8406, 2024 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600150

RESUMO

The aim of this work was to synthesize a green nanoparticle SnCuO@FeO nanocomposite core-shell to break oily water emulsions during petroleum-enhancing production processes as an alternative to chemical and physical processes. In this study, eight bacterial isolates (MHB1-MHB8) have been isolated from tree leaves, giant reeds, and soil samples. The investigation involved testing bacterial isolates for their ability to make FeO nanoparticles and choosing the best producers. The selected isolate (MHB5) was identified by amplification and sequencing of the 16S rRNA gene as Bacillus paramycoides strain OQ878685. MHB5 produced the FeO nanoparticles with the smallest particle size (78.7 nm) using DLS. XRD, FTIR, and TEM were used to characterize the biosynthesized nanoparticles. The jar experiment used SnCuO@FeO with different ratios of Sn to CuO (1:1, 2:1, and 3:1) to study the effect of oil concentration, retention time, and temperature. The most effective performance was observed with a 1:1 ratio of Sn to CuO, achieving an 85% separation efficiency at a concentration of 5 mg/L, for a duration of 5 min, and at a temperature of 373 K. Analysis using kinetic models indicates that the adsorption process can be accurately described by both the pseudo-first-order and pseudo-second-order models. This suggests that the adsorption mechanism likely involves a combination of film diffusion and intraparticle diffusion. Regarding the adsorption isotherm, the Langmuir model provides a strong fit for the data, while the D-R model indicates that physical interactions primarily govern the adsorption mechanism. Thermodynamic analysis reveals a ∆H value of 18.62 kJ/mol, indicating an exothermic adsorption process. This suggests that the adsorption is a favorable process, as energy is released during the process. Finally, the synthesized green SnCuO@FeO nanocomposite has potential for use in advanced applications in the oil and gas industry to help the industry meet regulatory compliance, lower operation costs, reduce environmental impact, and enhance production efficiency.


Assuntos
Nanocompostos , Petróleo , Poluentes Químicos da Água , Emulsões , RNA Ribossômico 16S , Termodinâmica , Água/química , Adsorção , Cinética , Poluentes Químicos da Água/química , Concentração de Íons de Hidrogênio
8.
RSC Adv ; 14(15): 10776-10789, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38572348

RESUMO

Dye-contaminated wastewater is a major environmental problem that requires effective and affordable treatment methods. This study investigates an innovative approach using black sand filtration assisted by UV light to remove methylene blue (MB) dye from wastewater. The motivation is to develop a sustainable low-cost wastewater treatment technology. Black sand's composition of iron oxide and other metal oxides enables the adsorption and photocatalytic degradation of dyes. The effects of operating parameters, including pH, bed height, flow rate, and initial MB concentration, were examined using a fixed-bed column system. The maximum adsorption capacity was 562.43 mg g-1 at optimal pH 10, 15 cm bed height, 50 ppm MB, and 53.33 mL min-1 flow rate. Mathematical models effectively described the experimental breakthrough curves. For real textile wastewater, black sand with a UV lamp removed 50.40% COD, 73.68% TDS, 43.82% TSS, and 98.57% conductivity, significantly outperforming filtration without UV assistance. Characterization via XRD, XRF, FTIR, zeta potential, and SEM revealed black sand's photocatalytic properties and mechanism of MB adsorption. The findings demonstrate black sand filtration plus UV irradiation as a feasible, sustainable technology for removing dyes and organics from wastewater. This method has promise for the scale-up treatment of textiles and other industrial effluents.

9.
J Fluoresc ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38538961

RESUMO

Dye solubilization in microemulsion based on Cetyltrimethylammonium bromide (CTAB) and its modified forms (counter-anions based upon Zn2+, Cu2+ and Fe3+) is comparatively innovative and not explored in existing literature. Here, surfactant with modified counterions (SMCs) were used to study the effects of metal chlorides (ZnCl2, CuCl2 and FeCl3) modifications on the comparative solubilization of Rhodamine-B (RB) by Cetyltrimethylammonium bromide (CTAB) and its modified forms. The solubility of RB in different microemulsions were studied using UV-Visible spectroscopy and phase diagrams of CTAB with modified counter ions CTA+[ZnCl2.Br]- named as CZN-1, CTA+[CuCl2.Br]- named as CCU-1 and CTA+[FeCl3.Br]- named as CFE-1 based upon surfactant with modified counter ions (SMCs). Four different points in microemulsion region of phase diagram were selected with different percentage composition of Smix (surfactant and co-surfactant), oil and RB (taken as water component). The interaction of RB, CCU-1, CFE-1 and CZN-1 within microemulsion environment were studied using Fluorescence spectroscopy. Emission spectra of RB in CCU-1 and CFE-1 based microemulsion confirmed that RB formed complexes with Cu and Fe ions. It was also found that RB was less soluble in CTAB based microemulsion as compared to microemulsions based on SMCs. This novel research study will expose new path for future research work related to microemulsion.

10.
Plants (Basel) ; 13(3)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38337931

RESUMO

Salinity stress can significantly cause negative impacts on the physiological and biochemical traits of plants and, consequently, a reduction in the yield productivity of crops. Therefore, the current study aimed to investigate the effects of chitosan (Cs) and chitosan nanoparticles (CsNPs) to mitigate salinity stress (i.e., 25, 50, 100, and 200 mM NaCl) and improve pigment fractions, carbohydrates content, ions content, proline, hydrogen peroxide, lipid peroxidation, electrolyte leakage content, and the antioxidant system of Phaseolus vulgaris L. grown in clay-sandy soil. Methacrylic acid was used to synthesize CsNPs, with an average size of 40 ± 2 nm. Salinity stress negatively affected yield traits, pigment fractions, and carbohydrate content. However, in plants grown under salt stress, the application of either Cs or CsNPs significantly improved yield, pigment fractions, carbohydrate content, proline, and the antioxidant system, while these treatments reduced hydrogen peroxide, lipid peroxidation, and electrolyte leakage. The positive effects of CsNPs were shown to be more beneficial than Cs when applied exogenously to plants grown under salt stress. In this context, it could be concluded that CsNPs could be used to mitigate salt stress effects on Phaseolus vulgaris L. plants grown in saline soils.

11.
World J Urol ; 42(1): 75, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38329579

RESUMO

OBJECTIVE: To evaluate the effect of semirigid ureteroscopy and tamsulosin therapy as dilatation methods before flexible ureteroscopy advancement to the renal collecting system. PATIENTS AND METHODS: This prospective study included patients with renal stones less than 2 cm who underwent retrograde flexible ureteroscopy and laser lithotripsy. The patients were randomized into two groups: group A patients were given a placebo for 1 week before flexible ureteroscopy, and group B patients were administered 0.4 mg of tamsulosin once daily for 1 week before surgery and underwent active dilatation using semirigid ureteroscopy before flexible ureteroscopy. The ability of the flexible ureteroscope to reach the collecting system in both groups during the same operative session was assessed. Operative outcomes and complications were collected and analyzed in both groups. RESULTS: A total of 170 patients were included in our study, with each group comprising 85 patients. In group B, the flexible ureteroscope successfully accessed the kidney in 61 patients, while in group A, the flexible ureteroscope was successful only in 28 cases (71.4% versus 32.9%). In group A, 33 (38.8%) patients had lower urinary tract symptoms compared to 17 (20.2%) patients in group B (P = 0.013). CONCLUSION: Using tamsulosin therapy and semirigid ureteroscopy as dilatation methods before flexible ureteroscopy increased the success of primary flexible ureteroscopy advancement to renal collecting system.


Assuntos
Cálculos Renais , Ureteroscopia , Humanos , Ureteroscópios , Tansulosina/uso terapêutico , Dilatação , Estudos Prospectivos , Cálculos Renais/cirurgia
13.
Chem Biodivers ; 21(2): e202301560, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38251927

RESUMO

Several infectious diseases are transmitted and spread by mosquitoes, and millions of people die annually from them. The mosquito, Culex pipiens is a responsible for the emergence of various Virus in Egypt. So, we devote our work to evaluate the larvicidal efficacy against C. pipiens of some new heterocyclic compounds containing chlorine motifs. The implementation was emanated from using 2-cyano-N'-(2-(2,4-dichlorophenoxy)acetyl)acetohydrazide (3) as scaffold to synthesize some new heterocyclic compounds. The structures of the synthesized compounds were interpreted scrupulously by spectroscopic and elemental analyses. Thereafter, the larvicidal activity against C. pipiens of thirteen synthesized compounds was estimated. Noteworthy, cyanoacetohydrazide derivative 3 and 3-iminobenzochromene derivative 12 showed a fabulous potent efficacy with LC50 equal to 3.2 and 3.5 ppm against C. pipiens, respectively, and are worth being further evaluated in the field of pest control.


Assuntos
Culex , Compostos Heterocíclicos , Hidrazinas , Inseticidas , Humanos , Animais , Inseticidas/farmacologia , Inseticidas/química , Larva , Compostos Heterocíclicos/farmacologia , Extratos Vegetais/química
14.
Heliyon ; 10(1): e22960, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38163208

RESUMO

Citrus is a remarkable fruit crop, extremely sensitive to flooding conditions, which frequently trigger hypoxia stress and cause severe damage to citrus plants. Silicon nanoparticles (SiNPs) are beneficial and have the potential to overcome this problem. Therefore, the present study aimed to investigate the effect of silicon nanoparticles to overcome hypoxia stress through modulating antioxidant enzyme activity and carbohydrate metabolism. Three citrus rootstocks (Carrizo citrange, Roubidoux, and Rich 16-6) were exposed to flooding (with and without oxygen) through different SiNP treatments via foliar and root zone. SiNPs applied treatment plants showed a significant increase in photosynthesis, leaf greenness, antioxidant enzymes, and carbohydrate metabolic activities, besides the higher accumulation of proline and glycine betaine. The rate of lipid peroxidation was drastically higher in flooded plants; however, SiNPs application reduced it significantly, ultimately reducing oxidative damage. Overall, Rich16-6 rootstock showed good performance via root zone application compared to other rootstocks, possibly due to genotypical variation in silicon uptake. Our outcomes demonstrate that SiNPs significantly affect plant growth during hypoxia stress conditions, and their use is an optimal strategy to overcome this issue. This study laid the foundation for future research to use at the commercial level to overcome hypoxia stress and a potential platform for future research.

15.
Sci Rep ; 14(1): 2456, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291055

RESUMO

The tertiary composite of TiO2/CuO @ Ag (TCA) were synthesized by the solid state method using different ratios of TiO2/CuO NCs and Ag NPs. The structural, morphological, and optical properties of nanocomposites were analyzed by scanning electron microscope, Transmission electron microscope, X-ray diffraction, Fourier transform infrared spectra, UV-Vis diffuse reflectance spectra (UV-Vis/DRS) and photoluminescence spectrophotometry. The results showed enhanced activity of TCA hybrid nano crystals in oxidizing MB in water under visible light irradiation compared to pure TiO2. The photocatalytic performance TCA samples increased with suitable Ag content. The results show that the photo degradation efficiency of the TiO2 compound improved from 13 to 85% in the presence of TiO2-CuO and to 98.87% in the presence of Ag containing TiO2-CuO, which is 7.6 times higher than that of TiO2. Optical characterization results show enhanced nanocomposite absorption in the visible region with long lifetimes between e/h+ at optimal TiO2-CuO/Ag (TCA2) ratio. Reusable experiments indicated that the prepared TCA NC photo catalysts were stable during MB photo degradation and had practical applications for environmental remediation.

16.
Oral Radiol ; 40(1): 21-29, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37525022

RESUMO

OBJECTIVES: To analyze various anatomical aspects of the maxillary sinuses on CBCT volumes, mainly, the posterior superior alveolar artery (PSAA), and to compare its visibility on CBCT vs. panoramic radiographs. MATERIAL AND METHODS: A retrospective radiographic analysis was conducted on 120 patients (240 maxillary sinuses) using their CBCT coronal views (CCV) and panoramic radiographs (CP). On CCV, the PSAA's maximum dimension (MD), vertical distance (PVD) to the alveolar crest, and bone plate thickness (T1 and T2) buccally and inferiorly to the PSAA, respectively, were analyzed. Additionally, on CCV, the ostium vertical distance (OVD) and location were recorded, and the height of the remaining bone height inferior to the maxillary sinuses (MVD) was also measured. The PSAA's visibility was evaluated and compared between CCV and CP. All these variables were studied at the apical region of the second maxillary premolar (P2), first molar (M1), and second molar (M2). Age, gender, and face side (right vs. left) factors affecting the sinus dimensions and visibility were investigated. Several statistical tests were used to analyze these variables. RESULTS: PSAA was detected in 96.53% of the records on CCV, where it was significantly superior to CP in the detection of the PSAA structure (p value 0.000) at all sites analyzed. The PSAA's MD, PVD, T1 and T2 thicknesses, and MVD were on average 1.19 mm, 19.54 mm, 0.69 mm, 1.36 mm, and 10.25, respectively. OVD average was 31.04 mm where 42.9% of the ostia were within the mesiodistal extent of the second upper molar. No significant relation was found between different age groups, gender, and the visibility level of PSAA. CONCLUSION: Age, gender, and the side of the face investigated showed no discernible effects on the maxillary sinus's bone thickness, vertical dimensions, or PSAA diameter among the studied Palestinian sample. As CCV was superior to CP in the identification of PSSA, preoperative evaluation of PSSA using CBCT volumes is thus recommended.


Assuntos
Transplante Ósseo , Tomografia Computadorizada de Feixe Cônico , Humanos , Estudos Retrospectivos , Tomografia Computadorizada de Feixe Cônico/métodos , Seio Maxilar/diagnóstico por imagem , Árabes
17.
Environ Sci Pollut Res Int ; 31(2): 2297-2313, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38062214

RESUMO

In this study, we developed a novel nanocomposite-based membrane using maghemite copper oxide (MC) to enhance the separation efficiency of poly(vinyl chloride) (PVC) membranes for oil-in-water emulsions. The MC nanocomposite was synthesized using a co-precipitation method and incorporated into a PVC matrix by casting. The resulting nanocomposite-based membrane demonstrated a high degree of crystallinity and well-dispersed nanostructure, as confirmed by TEM, SEM, XRD, and FT-IR analyses. The performance of the membrane was evaluated in terms of water flux, solute rejection, and anti-fouling properties. The pinnacle of performance was unequivocally reached with a solution dosage of 50 mL, a solution concentration of 100 mg L-1, and a pump pressure of 2 bar, ensuring that every facet of the membrane's potential was fully harnessed. The new fabricated membrane exhibited superior efficiency for oil-water separation, with a rejection rate of 98% and an ultra-high flux of 0.102 L/m2 h compared to pure PVC membranes with about 90% rejection rate and an ultra-high flux of 0.085 L/m2 h. Furthermore, meticulous contact angle measurements revealed that the PMC nanocomposite membrane exhibited markedly lower contact angles (65° with water, 50° with ethanol, and 25° with hexane) compared to PVC membranes. This substantial reduction, transitioning from 85 to 65° with water, 65 to 50° with ethanol, and 45 to 25° with hexane for pure PVC membranes, underscores the profound enhancement in hydrophilicity attributed to the heightened nanoparticle content. Importantly, the rejection efficiency remained stable over five cycles, indicating excellent anti-fouling and cycling stability. The results highlight the potential of the maghemite copper oxide nanocomposite-based PVC membrane as a promising material for effective oil-in-water emulsion separation. This development opens up new possibilities for more flexible, durable, and anti-fouling membranes, making them ideal candidates for potential applications in separation technology. The presented findings provide valuable information for the advancement of membrane technology and its utilization in various industries, addressing the pressing challenge of oil-induced water pollution and promoting environmental sustainability.


Assuntos
Incrustação Biológica , Compostos Férricos , Nanocompostos , Cobre , Hexanos , Emulsões/química , Espectroscopia de Infravermelho com Transformada de Fourier , Nanocompostos/química , Água/química , Etanol , Membranas Artificiais
18.
J Hand Surg Am ; 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38069949

RESUMO

PURPOSE: This study aimed to assess the effectiveness of erythropoietin (EPO) as a novel treatment for peripheral nerve injury after surgical repair of an induced tibial nerve injury in dogs. METHODS: Mongrel dogs (n = 27) were randomly divided into three equal groups. A complete tibial nerve injury was induced and repaired directly by stay sutures and the local application of 1 mL fibrin glue (control group). In the "systemic" group, 20,000 IU of EPO were given subcutaneously immediately after surgery and on the first and second days after surgery. In the "local" group, EPO was mixed with fibrin glue at 1,000 IU/mL. Lameness score, compound muscle action potential of the tibial nerve, and serum biochemical and histopathological examinations were performed to evaluate the treated dogs over the study period (12 weeks). RESULTS: EPO significantly improved the lameness score and compound muscle action potential in both the systemic and local groups. After 12 weeks, systemic and local groups showed earlier improvement in lameness, reaching scores of -1 and 0, respectively, in comparison with the control group, which did not reach a score of -1. The histological study revealed a normal architecture of the nerve bundles within connective tissue. The axons were aligned in a regular pattern, whereas the control group had disrupted and degenerated nerve axons with large gaps in between. CONCLUSIONS: EPO has an accelerating healing effect after tibial nerve surgical repair. Local EPO mimics systemic EPO treatment without systemic adverse effects. These findings indicated that EPO has a potential role in tibial nerve recovery and nerve regeneration. CLINICAL RELEVANCE: The findings of the present experimental study supported the beneficial effects of systemic and local EPO when combined with peripheral nerve surgical repair, potentially improving functional outcomes and enhancing faster recovery.

19.
ACS Omega ; 8(49): 46325-46345, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38107971

RESUMO

Oil and gas are only two industries that could change because of nanotechnology, a rapidly growing field. The chemical-enhanced oil recovery (CEOR) method uses chemicals to accelerate oil flow from reservoirs. New and enhanced CEOR compounds that are more efficient and eco-friendly can be created using nanotechnology. One of the main research areas is creating novel nanomaterials that can transfer EOR chemicals to the reservoir more effectively. It was creating nanoparticles that can be used to change the viscosity and surface tension of reservoir fluids and constructing nanoparticles that can be utilized to improve the efficiency of the EOR compounds that are already in use. The assessment also identifies some difficulties that must be overcome before nanotechnology-based EOR can become widely used in industry. These difficulties include the requirement for creating mass-producible, cost-effective nanomaterials. There is a need to create strategies for supplying nanomaterials to the reservoir without endangering the formation of the reservoir. The requirement is to evaluate the environmental effects of CEOR compounds based on nanotechnology. The advantages of nanotechnology-based EOR are substantial despite the difficulties. Nanotechnology could make oil production more effective, profitable, and less environmentally harmful. An extensive overview of the most current advancements in nanotechnology-based EOR is provided in this paper. It is a useful resource for researchers and business people interested in this area. This review's analysis of current advancements in nanotechnology-based EOR shows that this area is attracting more and more attention. There have been a lot more publications on this subject in recent years, and a lot of research is being done on many facets of nanotechnology-based EOR. The scientometric investigation discovered serious inadequacies in earlier studies on adopting EOR and its potential benefits for a sustainable future. Research partnerships, joint ventures, and cutting-edge technology that consider assessing current changes and advances in oil output can all benefit from the results of our scientometric analysis.

20.
Dalton Trans ; 52(45): 17041, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37947357

RESUMO

Correction for 'Synthesis of novel solid scale inhibitors based on silver tungstate loaded KIT-6 for scale removal from produced water: static and modeling evaluation' by Heba M. Salem, et al., Dalton Trans., 2023, https://doi.org/10.1039/d3dt02594b.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...