Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(14)2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39063081

RESUMO

Adding carbonyl groups into the hydrogel matrix improves the stability and biocompatibility of the hydrogels, making them suitable for different biomedical applications. In this review article, we will discuss the use of hydrogels based on polysaccharides modified by oxidation, with particular attention paid to the introduction of carbonyl groups. These hydrogels have been developed for several applications in tissue engineering, drug delivery, and wound healing. The review article discusses the mechanism by which oxidized polysaccharides can introduce carbonyl groups, leading to the development of hydrogels through cross-linking with proteins. These hydrogels have tunable mechanical properties and improved biocompatibility. Hydrogels have dynamic properties that make them promising biomaterials for various biomedical applications. This paper comprehensively analyzes hydrogels based on cross-linked proteins with carbonyl groups derived from oxidized polysaccharides, including microparticles, nanoparticles, and films. The applications of these hydrogels in tissue engineering, drug delivery, and wound healing are also discussed.


Assuntos
Materiais Biocompatíveis , Sistemas de Liberação de Medicamentos , Hidrogéis , Polissacarídeos , Proteínas , Engenharia Tecidual , Cicatrização , Hidrogéis/química , Polissacarídeos/química , Humanos , Materiais Biocompatíveis/química , Engenharia Tecidual/métodos , Cicatrização/efeitos dos fármacos , Proteínas/química , Animais , Reagentes de Ligações Cruzadas/química , Oxirredução
2.
Polymers (Basel) ; 15(23)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38231926

RESUMO

Nowadays, the Magnetically Targeted Drug Delivery System (MTDDS) is among the most attractive and promising strategies for delivering drugs to the target site. The present study aimed to obtain a biopolymer-magnetite-drug nanosystem via a double crosslinking (ionic and covalent) technique in reverse emulsion, which ensures the mechanical stability of the polymer support in the form of original hybrid nanospheres (NSMs) loaded with biologically active principles (the 5-Fluorouracil (5-FU)) as a potential treatment for cancer. Obtained NSMs were characterized in terms of structure (FT-IR), size (DLS), morphology (SEM), swelling, and 5-FU entrapment/release properties, which were dependent on the synthesis parameters (polymer concentration, dispersion speed, and amount of ionic crosslinking agent). SEM analysis results revealed that NSMs presented a spherical shape and are homogeneous and separated. Moreover, NSMs' ability to load/release 5-FU was tested in vitro, the results confirming, as expected, their dependence on the varied synthesis process and NSM swelling ability in physiological liquids. The drug transport mechanism through the polymer matrix of its release is the Fickian type. The morphological, bio-material characteristics and the ability to include and release an antitumor drug highlight the utility of the NSMs obtained for targeting and treating some tumor diseases.

3.
Molecules ; 24(4)2019 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-30781579

RESUMO

The approach of the present work is based on the use of poly (methylmethacrylate) (PMMA) polymer, which is compatible with PVDF and TiO2 nanoparticles in casting solutions, for the preparation of nano-composites membranes using a safer and more compatible solvent. TiO2 embedded poly (vinylidene fluoride) (PVDF)/PMMA photocatalytic membranes were prepared by phase inversion method. A non-solvent induced phase separation (NIPS) coupled with vapor induced phase separation (VIPS) was used to fabricate flat-sheet membranes using a dope solution consisting of PMMA, PVDF, TiO2, and triethyl phosphate (TEP) as an alternative non-toxic solvent. Membrane morphology was examined by scanning electron microscopy (SEM). Backscatter electron detector (BSD) mapping was used to monitor the inter-dispersion of TiO2 in the membrane surface and matrix. The effects of polymer concentration, evaporation time, additives and catalyst amount on the membrane morphology and properties were investigated. Tests on photocatalytic degradation of methylene blue (MB) were also carried out using the membranes entrapped with different concentrations of TiO2. The results of this study showed that nearly 99% MB removal can be easily achieved by photocatalysis using TiO2 immobilized on the membrane matrix. Moreover, it was observed that the quantity of TiO2 plays a significant role in the dye removal.


Assuntos
Fotoquímica , Polimetil Metacrilato/química , Polivinil/química , Titânio/química , Catálise , Membranas Artificiais , Permeabilidade , Transição de Fase , Processos Fotoquímicos , Fotoquímica/métodos , Polímeros/química , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA