Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(17): e37022, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39286197

RESUMO

This study investigates the antibacterial activity and spectral characteristics of Cu-doped ZnO nanoparticles synthesized via the gelatin-based sol-gel method, focusing on their potential biomedical applications. Zn1₋ₓCuₓO nanoparticles (x = 0.0, 0.01, 0.03, and 0.05) were fabricated using this method. The incorporation of copper dopants into the ZnO matrix significantly influences both the crystalline structure and spectral properties of the nanoparticles. X-ray diffraction analysis confirms the presence of a wurtzite structure without any pyrochlore phase. The broadening of spectral features indicates modifications in lattice parameters and elastic constants. XRD results reveal that adding Cu to the ZnO lattice causes a decrease in crystallite size from 32 to 18 nm. Transmission electron microscopy shows spherical-shaped ZnO nanoparticles with sizes ranging from 30 to 40 nm. Moreover, Cu-doped ZnO nanoparticles exhibit considerable inhibition against bacterial growth. Adding Cu enhances the antibacterial activity of ZnO nanoparticles, suggesting their potential in biomedical applications. Overall, these findings highlight the promising prospects of sol-gel synthesized Cu-doped ZnO nanoparticles in the biomedical field.

2.
Environ Res ; 216(Pt 1): 114416, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36181897

RESUMO

In this study, an adsorbent made of alginate (Alg) caged magnesium sulfide nanoparticles (MgS) microbeads were used to treat lead ions (Pb2+ ions). The MgS nanoparticles were synthesized at low temperatures, and Alg@MgS hydrogel microbeads were made by the ion exchange process of the composite materials. The newly fabricated Alg@MgS was characterized by XRD, SEM, and FT-IR. The adsorption conditions were optimized for the maximum removal of Pb2+ ions by adjusting several physicochemical parameters, including pH, initial concentration of lead ions, Alg/MgS dosage, reaction temperature, equilibration time, and the presence of co-ions. This is accomplished by removing the maximum amount of Pb2+ ions. Moreover, the adsorbent utilized more than six times with a substantial amount (not less than 60%) of Pb2+ ions was eliminated. Considering the ability of sodium alginate (SA) for excellent metal chelation and controlled nanosized pore structure, the adsorption equilibrium of Alg@MgS can be reached in 60 min, and the highest adsorption capacity for Pb2+ was 84.7 mg/g. The sorption mechanism was explored by employing several isotherms. It was found that the Freundlich model fits the adsorption process quite accurately. The pseudo-second-order model adequately described the adsorption kinetics.


Assuntos
Nanopartículas , Poluentes Químicos da Água , Purificação da Água , Alginatos/química , Águas Residuárias , Magnésio , Microesferas , Chumbo , Poluentes Químicos da Água/análise , Espectroscopia de Infravermelho com Transformada de Fourier , Adsorção , Cinética , Sulfetos , Concentração de Íons de Hidrogênio
3.
Polymers (Basel) ; 12(4)2020 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-32283630

RESUMO

Currently, the role of the nanoparticles in the structure of the composites and their benefits for the health of the body is valuable. In this study, the effects of the doping on the structural and morphological properties of the hydrogels using a Mg co-doped ZnO hydrogel, which has been fabricated by the sol-gel process, have been investigated. Then, a hydrogel containing nanoparticle and a hydrogel without any nanoparticles was produced as a control. The hydrogels were loaded with catechin and the related characterization was evolved based on the new structure of the matrices. The Mg0.99Zn0.01O nanoparticles were synthesized using a green synthesis method. To investigate the properties of the nanoparticles, zeta potential and XRD were studied. The field emission scanning electron microscopy (FESEM), FTIR, TGA, swelling Ratio, and compression tests were investigated for the hydrogels. Based on the results, FESEM showed a more compressed structure for hydrogels including nanoparticles rather than the hydrogels without a nanoparticle. The TGA showed a higher decomposition temperature in the hydrogels including nanoparticles. The swelling ratio of hydrogels containing a nanoparticle was higher than the control hydrogel. κ-Carrageenan/ Mg0.99Zn0.01O/NaCMC/Catechin had the highest swelling ratio (44.15%) rather than the κ-Carrageenan/NaCMC (33.22%). Mg0.99Zn0.01O nanoparticles presented a stronger structure of hydrogels in the compression test. It is concluded that the role of the synthesized nanoparticle is critical in the structure of the hydrogel.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA