Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Phys Eng Express ; 10(4)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38457844

RESUMO

Objective.Although emotion recognition has been studied for decades, a more accurate classification method that requires less computing is still needed. At present, in many studies, EEG features are extracted from all channels to recognize emotional states, however, there is a lack of an efficient feature domain that improves classification performance and reduces the number of EEG channels.Approach.In this study, a continuous wavelet transform (CWT)-based feature representation of multi-channel EEG data is proposed for automatic emotion recognition. In the proposed feature, the time-frequency domain information is preserved by using CWT coefficients. For a particular EEG channel, each CWT coefficient is mapped into a strength-to-entropy component ratio to obtain a 2D representation. Finally, a 2D feature matrix, namely CEF2D, is created by concatenating these representations from different channels and fed into a deep convolutional neural network architecture. Based on the CWT domain energy-to-entropy ratio, effective channel and CWT scale selection schemes are also proposed to reduce computational complexity.Main results.Compared with previous studies, the results of this study show that valence and arousal classification accuracy has improved in both 3-class and 2-class cases. For the 2-class problem, the average accuracies obtained for valence and arousal dimensions are 98.83% and 98.95%, respectively, and for the 3-class, the accuracies are 98.25% and 98.68%, respectively.Significance.Our findings show that the entropy-based feature of EEG data in the CWT domain is effective for emotion recognition. Utilizing the proposed feature domain, an effective channel selection method can reduce computational complexity.


Assuntos
Algoritmos , Eletroencefalografia , Emoções , Redes Neurais de Computação , Análise de Ondaletas , Humanos , Eletroencefalografia/métodos , Processamento de Sinais Assistido por Computador , Entropia , Nível de Alerta/fisiologia
2.
Sensors (Basel) ; 23(4)2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36850415

RESUMO

The ornamental crop industry is an important contributor to the economy in the United States. The industry has been facing challenges due to continuously increasing labor and agricultural input costs. Sensing and automation technologies have been introduced to reduce labor requirements and to ensure efficient management operations. This article reviews current sensing and automation technologies used for ornamental nursery crop production and highlights prospective technologies that can be applied for future applications. Applications of sensors, computer vision, artificial intelligence (AI), machine learning (ML), Internet-of-Things (IoT), and robotic technologies are reviewed. Some advanced technologies, including 3D cameras, enhanced deep learning models, edge computing, radio-frequency identification (RFID), and integrated robotics used for other cropping systems, are also discussed as potential prospects. This review concludes that advanced sensing, AI and robotic technologies are critically needed for the nursery crop industry. Adapting these current and future innovative technologies will benefit growers working towards sustainable ornamental nursery crop production.


Assuntos
Inteligência Artificial , Tecnologia , Estudos Prospectivos , Automação , Produção Agrícola
3.
Heliyon ; 8(1): e08753, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35146149

RESUMO

Global warming as a result of climate change has become a major concern for people all over the world. It has recently drawn the attention of the entire conscious community, with the fear that if not addressed properly, it will result in the extinction of numerous species around the world. At the same time, it will pose a threat to human health, food security, living environment and standard of living. Thereby, possible solutions are being explored accordingly; regulations have been imposed in places binding green production practices, limiting the emission of CO2 and emphasis is given on renewable resources along with the search for alternatives to carbon-positive materials. Cannabis sativa L. (hemp) has received a lot of attention because of its multipurpose usability, short production cycle, low capital demand in cultivation, possibility of carbon-negative transformation and easy carbon sequestering material. This paper reviews hemp as a very promising renewable resource including its potential uses in paper, textiles, composites, biofuel, and food industry.

4.
Molecules ; 26(23)2021 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-34885798

RESUMO

Antimicrobial resistance has emerged as a global health crisis and, therefore, new drug discovery is a paramount need. Cannabis sativa contains hundreds of chemical constituents produced by secondary metabolism, exerting outstanding antimicrobial, antiviral, and therapeutic properties. This paper comprehensively reviews the antimicrobial and antiviral (particularly against SARS-CoV-2) properties of C. sativa with the potential for new antibiotic drug and/or natural antimicrobial agents for industrial or agricultural use, and their therapeutic potential against the newly emerged coronavirus disease (COVID-19). Cannabis compounds have good potential as drug candidates for new antibiotics, even for some of the WHO's current priority list of resistant pathogens. Recent studies revealed that cannabinoids seem to have stable conformations with the binding pocket of the Mpro enzyme of SARS-CoV-2, which has a pivotal role in viral replication and transcription. They are found to be suppressive of viral entry and viral activation by downregulating the ACE2 receptor and TMPRSS2 enzymes in the host cellular system. The therapeutic potential of cannabinoids as anti-inflammatory compounds is hypothesized for the treatment of COVID-19. However, more systemic investigations are warranted to establish the best efficacy and their toxic effects, followed by preclinical trials on a large number of participants.


Assuntos
Anti-Infecciosos/farmacologia , Tratamento Farmacológico da COVID-19 , Canabinoides/farmacologia , Cannabis/química , SARS-CoV-2/efeitos dos fármacos , Humanos
5.
Sensors (Basel) ; 21(9)2021 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-34066785

RESUMO

Reducing risk from pesticide applications has been gaining serious attention in the last few decades due to the significant damage to human health, environment, and ecosystems. Pesticide applications are an essential part of current agriculture, enhancing cultivated crop productivity and quality and preventing losses of up to 45% of the world food supply. However, inappropriate and excessive use of pesticides is a major rising concern. Precision spraying addresses these concerns by precisely and efficiently applying pesticides to the target area and substantially reducing pesticide usage while maintaining efficacy at preventing crop losses. This review provides a systematic summary of current technologies used for precision spraying in tree fruits and highlights their potential, briefly discusses factors affecting spraying parameters, and concludes with possible solutions to reduce excessive agrochemical uses. We conclude there is a critical need for appropriate sensing techniques that can accurately detect the target. In addition, air jet velocity, travel speed, wind speed and direction, droplet size, and canopy characteristics need to be considered for successful droplet deposition by the spraying system. Assessment of terrain is important when field elevation has significant variability. Control of airflow during spraying is another important parameter that needs to be considered. Incorporation of these variables in precision spraying systems will optimize spray decisions and help reduce excessive agrochemical applications.

6.
J Neural Eng ; 18(4)2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33690177

RESUMO

Objective.Categorical perception (CP) of audio is critical to understand how the human brain perceives speech sounds despite widespread variability in acoustic properties. Here, we investigated the spatiotemporal characteristics of auditory neural activity that reflects CP for speech (i.e. differentiates phonetic prototypes from ambiguous speech sounds).Approach.We recorded 64-channel electroencephalograms as listeners rapidly classified vowel sounds along an acoustic-phonetic continuum. We used support vector machine classifiers and stability selection to determine when and where in the brain CP was best decoded across space and time via source-level analysis of the event-related potentials.Main results. We found that early (120 ms) whole-brain data decoded speech categories (i.e. prototypical vs. ambiguous tokens) with 95.16% accuracy (area under the curve 95.14%;F1-score 95.00%). Separate analyses on left hemisphere (LH) and right hemisphere (RH) responses showed that LH decoding was more accurate and earlier than RH (89.03% vs. 86.45% accuracy; 140 ms vs. 200 ms). Stability (feature) selection identified 13 regions of interest (ROIs) out of 68 brain regions [including auditory cortex, supramarginal gyrus, and inferior frontal gyrus (IFG)] that showed categorical representation during stimulus encoding (0-260 ms). In contrast, 15 ROIs (including fronto-parietal regions, IFG, motor cortex) were necessary to describe later decision stages (later 300-800 ms) of categorization but these areas were highly associated with the strength of listeners' categorical hearing (i.e. slope of behavioral identification functions).Significance.Our data-driven multivariate models demonstrate that abstract categories emerge surprisingly early (∼120 ms) in the time course of speech processing and are dominated by engagement of a relatively compact fronto-temporal-parietal brain network.


Assuntos
Córtex Auditivo , Percepção da Fala , Estimulação Acústica/métodos , Córtex Auditivo/fisiologia , Encéfalo/fisiologia , Potenciais Evocados Auditivos , Humanos , Aprendizado de Máquina , Fala , Percepção da Fala/fisiologia
7.
J Acoust Soc Am ; 149(3): 1644, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33765780

RESUMO

Categorical perception (CP) describes how the human brain categorizes speech despite inherent acoustic variability. We examined neural correlates of CP in both evoked and induced electroencephalogram (EEG) activity to evaluate which mode best describes the process of speech categorization. Listeners labeled sounds from a vowel gradient while we recorded their EEGs. Using a source reconstructed EEG, we used band-specific evoked and induced neural activity to build parameter optimized support vector machine models to assess how well listeners' speech categorization could be decoded via whole-brain and hemisphere-specific responses. We found whole-brain evoked ß-band activity decoded prototypical from ambiguous speech sounds with ∼70% accuracy. However, induced γ-band oscillations showed better decoding of speech categories with ∼95% accuracy compared to evoked ß-band activity (∼70% accuracy). Induced high frequency (γ-band) oscillations dominated CP decoding in the left hemisphere, whereas lower frequencies (θ-band) dominated the decoding in the right hemisphere. Moreover, feature selection identified 14 brain regions carrying induced activity and 22 regions of evoked activity that were most salient in describing category-level speech representations. Among the areas and neural regimes explored, induced γ-band modulations were most strongly associated with listeners' behavioral CP. The data suggest that the category-level organization of speech is dominated by relatively high frequency induced brain rhythms.


Assuntos
Percepção da Fala , Fala , Estimulação Acústica , Eletroencefalografia , Potenciais Evocados Auditivos , Humanos , Fonética
8.
Artigo em Inglês | MEDLINE | ID: mdl-32899619

RESUMO

Keeping the dynamic nature of Coronaviruses (COVID-19) pandemic in mind, we have opted to explore the importance of the decentralization of COVID-19 testing centers across the country of Bangladesh in order to combat the pandemic. In doing so, we considered quantitative, qualitative, and geographic information systems (GIS) datasets to identify the location of existing COVID-19 testing centers. Moreover, we attempted to collect data from the existing centers in order to demonstrate testing times at the divisional level of the country. Results show that the number of testing centers is not enough to cater to the vast population of the country. Additionally, we found that the number of days it takes to receive the results from the COVID-19 testing centers is not optimal at divisional cities, let alone the remote rural areas. Finally, we propose a set of recommendations in order to enhance the existing system to assist more people under a testing range of COVID-19 viruses at the local level.


Assuntos
Técnicas de Laboratório Clínico , Infecções por Coronavirus/diagnóstico , Programas de Rastreamento/organização & administração , Pneumonia Viral/diagnóstico , Bangladesh/epidemiologia , Betacoronavirus , COVID-19 , Teste para COVID-19 , Sistemas de Informação Geográfica , Humanos , Pandemias , SARS-CoV-2
9.
Front Neurosci ; 14: 748, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32765215

RESUMO

Speech perception in noisy environments depends on complex interactions between sensory and cognitive systems. In older adults, such interactions may be affected, especially in those individuals who have more severe age-related hearing loss. Using a data-driven approach, we assessed the temporal (when in time) and spatial (where in the brain) characteristics of cortical speech-evoked responses that distinguish older adults with or without mild hearing loss. We performed source analyses to estimate cortical surface signals from the EEG recordings during a phoneme discrimination task conducted under clear and noise-degraded conditions. We computed source-level ERPs (i.e., mean activation within each ROI) from each of the 68 ROIs of the Desikan-Killiany (DK) atlas, averaged over a randomly chosen 100 trials without replacement to form feature vectors. We adopted a multivariate feature selection method called stability selection and control to choose features that are consistent over a range of model parameters. We use parameter optimized support vector machine (SVM) as a classifiers to investigate the time course and brain regions that segregate groups and speech clarity. For clear speech perception, whole-brain data revealed a classification accuracy of 81.50% [area under the curve (AUC) 80.73%; F1-score 82.00%], distinguishing groups within ∼60 ms after speech onset (i.e., as early as the P1 wave). We observed lower accuracy of 78.12% [AUC 77.64%; F1-score 78.00%] and delayed classification performance when speech was embedded in noise, with group segregation at 80 ms. Separate analysis using left (LH) and right hemisphere (RH) regions showed that LH speech activity was better at distinguishing hearing groups than activity measured in the RH. Moreover, stability selection analysis identified 12 brain regions (among 1428 total spatiotemporal features from 68 regions) where source activity segregated groups with >80% accuracy (clear speech); whereas 16 regions were critical for noise-degraded speech to achieve a comparable level of group segregation (78.7% accuracy). Our results identify critical time-courses and brain regions that distinguish mild hearing loss from normal hearing in older adults and confirm a larger number of active areas, particularly in RH, when processing noise-degraded speech information.

10.
Brain Struct Funct ; 224(8): 2661-2676, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31346715

RESUMO

Speech comprehension difficulties are ubiquitous to aging and hearing loss, particularly in noisy environments. Older adults' poorer speech-in-noise (SIN) comprehension has been related to abnormal neural representations within various nodes (regions) of the speech network, but how senescent changes in hearing alter the transmission of brain signals remains unspecified. We measured electroencephalograms in older adults with and without mild hearing loss during a SIN identification task. Using functional connectivity and graph-theoretic analyses, we show that hearing-impaired (HI) listeners have more extended (less integrated) communication pathways and less efficient information exchange among widespread brain regions (larger network eccentricity) than their normal-hearing (NH) peers. Parameter optimized support vector machine classifiers applied to EEG connectivity data showed hearing status could be decoded (> 85% accuracy) solely using network-level descriptions of brain activity, but classification was particularly robust using left hemisphere connections. Notably, we found a reversal in directed neural signaling in left hemisphere dependent on hearing status among specific connections within the dorsal-ventral speech pathways. NH listeners showed an overall net "bottom-up" signaling directed from auditory cortex (A1) to inferior frontal gyrus (IFG; Broca's area), whereas the HI group showed the reverse signal (i.e., "top-down" Broca's → A1). A similar flow reversal was noted between left IFG and motor cortex. Our full-brain connectivity results demonstrate that even mild forms of hearing loss alter how the brain routes information within the auditory-linguistic-motor loop.


Assuntos
Envelhecimento/fisiologia , Encéfalo/fisiopatologia , Perda Auditiva/fisiopatologia , Percepção da Fala/fisiologia , Estimulação Acústica , Idoso , Envelhecimento/psicologia , Audiometria , Mapeamento Encefálico/métodos , Compreensão/fisiologia , Eletroencefalografia , Potenciais Evocados Auditivos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Vias Neurais/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...