Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Diagnostics (Basel) ; 14(11)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38893619

RESUMO

Diabetic retinopathy (DR) arises from blood vessel damage and is a leading cause of blindness on a global scale. Clinical professionals rely on examining fundus images to diagnose the disease, but this process is frequently prone to errors and is tedious. The usage of computer-assisted techniques offers assistance to clinicians in detecting the severity levels of the disease. Experiments involving automated diagnosis employing convolutional neural networks (CNNs) have produced impressive outcomes in medical imaging. At the same time, retinal image grading for detecting DR severity levels has predominantly focused on spatial features. More spectral features must be explored for a more efficient performance of this task. Analysing spectral features plays a vital role in various tasks, including identifying specific objects or materials, anomaly detection, and differentiation between different classes or categories within an image. In this context, a model incorporating Wavelet CNN and Support Vector Machine has been introduced and assessed to classify clinically significant grades of DR from retinal fundus images. The experiments were conducted on the EyePACS dataset and the performance of the proposed model was evaluated on the following metrics: precision, recall, F1-score, accuracy, and AUC score. The results obtained demonstrate better performance compared to other state-of-the-art techniques.

2.
Brain Inform ; 11(1): 10, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578524

RESUMO

Explainable artificial intelligence (XAI) has gained much interest in recent years for its ability to explain the complex decision-making process of machine learning (ML) and deep learning (DL) models. The Local Interpretable Model-agnostic Explanations (LIME) and Shaply Additive exPlanation (SHAP) frameworks have grown as popular interpretive tools for ML and DL models. This article provides a systematic review of the application of LIME and SHAP in interpreting the detection of Alzheimer's disease (AD). Adhering to PRISMA and Kitchenham's guidelines, we identified 23 relevant articles and investigated these frameworks' prospective capabilities, benefits, and challenges in depth. The results emphasise XAI's crucial role in strengthening the trustworthiness of AI-based AD predictions. This review aims to provide fundamental capabilities of LIME and SHAP XAI frameworks in enhancing fidelity within clinical decision support systems for AD prognosis.

3.
Int J Neural Syst ; 34(7): 2450029, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38576308

RESUMO

Artificial intelligence (AI)-based approaches are crucial in computer-aided diagnosis (CAD) for various medical applications. Their ability to quickly and accurately learn from complex data is remarkable. Deep learning (DL) models have shown promising results in accurately classifying Alzheimer's disease (AD) and its related cognitive states, Early Mild Cognitive Impairment (EMCI) and Late Mild Cognitive Impairment (LMCI), along with the healthy conditions known as Cognitively Normal (CN). This offers valuable insights into disease progression and diagnosis. However, certain traditional machine learning (ML) classifiers perform equally well or even better than DL models, requiring less training data. This is particularly valuable in CAD in situations with limited labeled datasets. In this paper, we propose an ensemble classifier based on ML models for magnetic resonance imaging (MRI) data, which achieved an impressive accuracy of 96.52%. This represents a 3-5% improvement over the best individual classifier. We evaluated popular ML classifiers for AD classification under both data-scarce and data-rich conditions using the Alzheimer's Disease Neuroimaging Initiative and Open Access Series of Imaging Studies datasets. By comparing the results to state-of-the-art CNN-centric DL algorithms, we gain insights into the strengths and weaknesses of each approach. This work will help users to select the most suitable algorithm for AD classification based on data availability.


Assuntos
Doença de Alzheimer , Aprendizado Profundo , Aprendizado de Máquina , Imageamento por Ressonância Magnética , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/classificação , Humanos , Imageamento por Ressonância Magnética/métodos , Diagnóstico por Computador/métodos , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico , Disfunção Cognitiva/classificação , Neuroimagem/métodos , Redes Neurais de Computação , Algoritmos
4.
Micromachines (Basel) ; 15(4)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38675290

RESUMO

The Internet of Things (IoT) is still a relatively new field of research, and its potential to be used in the healthcare and medical sectors is enormous. In the last five years, IoT has been a go-to option for various applications such as using sensors for different features, machine-to-machine communication, etc., but precisely in the medical sector, it is still lagging far behind compared to other sectors. Hence, this study emphasises IoT applications in medical fields, Medical IoT sensors and devices, IoT platforms for data visualisation, and artificial intelligence in medical applications. A systematic review considering PRISMA guidelines on research articles as well as the websites on IoMT sensors and devices has been carried out. After the year 2001, an integrated outcome of 986 articles was initially selected, and by applying the inclusion-exclusion criterion, a total of 597 articles were identified. 23 new studies have been finally found, including records from websites and citations. This review then analyses different sensor monitoring circuits in detail, considering an Intensive Care Unit (ICU) scenario, device applications, and the data management system, including IoT platforms for the patients. Lastly, detailed discussion and challenges have been outlined, and possible prospects have been presented.

5.
Sensors (Basel) ; 23(24)2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38139568

RESUMO

Machine learning (ML) is a well-known subfield of artificial intelligence (AI) that aims at developing algorithms and statistical models able to empower computer systems to automatically adapt to a specific task through experience or learning from data [...].


Assuntos
Inteligência Artificial , Aprendizado de Máquina , Algoritmos , Sistemas Computacionais , Modelos Estatísticos
6.
PLoS One ; 18(11): e0294253, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37972072

RESUMO

BACKGROUND: According to the World Health Organization (WHO), dementia is the seventh leading reason of death among all illnesses and one of the leading causes of disability among the world's elderly people. Day by day the number of Alzheimer's patients is rising. Considering the increasing rate and the dangers, Alzheimer's disease should be diagnosed carefully. Machine learning is a potential technique for Alzheimer's diagnosis but general users do not trust machine learning models due to the black-box nature. Even, some of those models do not provide the best performance because of using only neuroimaging data. OBJECTIVE: To solve these issues, this paper proposes a novel explainable Alzheimer's disease prediction model using a multimodal dataset. This approach performs a data-level fusion using clinical data, MRI segmentation data, and psychological data. However, currently, there is very little understanding of multimodal five-class classification of Alzheimer's disease. METHOD: For predicting five class classifications, 9 most popular Machine Learning models are used. These models are Random Forest (RF), Logistic Regression (LR), Decision Tree (DT), Multi-Layer Perceptron (MLP), K-Nearest Neighbor (KNN), Gradient Boosting (GB), Adaptive Boosting (AdaB), Support Vector Machine (SVM), and Naive Bayes (NB). Among these models RF has scored the highest value. Besides for explainability, SHapley Additive exPlanation (SHAP) is used in this research work. RESULTS AND CONCLUSIONS: The performance evaluation demonstrates that the RF classifier has a 10-fold cross-validation accuracy of 98.81% for predicting Alzheimer's disease, cognitively normal, non-Alzheimer's dementia, uncertain dementia, and others. In addition, the study utilized Explainable Artificial Intelligence based on the SHAP model and analyzed the causes of prediction. To the best of our knowledge, we are the first to present this multimodal (Clinical, Psychological, and MRI segmentation data) five-class classification of Alzheimer's disease using Open Access Series of Imaging Studies (OASIS-3) dataset. Besides, a novel Alzheimer's patient management architecture is also proposed in this work.


Assuntos
Doença de Alzheimer , Idoso , Humanos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/terapia , Inteligência Artificial , Teorema de Bayes , Análise por Conglomerados , Conhecimento
7.
Sensors (Basel) ; 23(15)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37571500

RESUMO

The increasing availability of Electric Vehicles (EVs) is driving a shift away from traditional gasoline-powered vehicles. Subsequently, the demand for Electric Vehicle Charging Systems (EVCS) is rising, leading to the significant growth of EVCS as public and private charging infrastructure. The cybersecurity-related risks in EVCS have significantly increased due to the growing network of EVCS. In this context, this paper presents a cybersecurity risk analysis of the network of EVCS. Firstly, the recent advancements in the EVCS network, recent EV adaptation trends, and charging use cases are described as a background of the research area. Secondly, cybersecurity aspects in EVCS have been presented considering infrastructure and protocol-centric vulnerabilities with possible cyber-attack scenarios. Thirdly, threats in EVCS have been validated with real-time data-centric analysis of EV charging sessions. The paper also highlights potential open research issues in EV cyber research as new knowledge for domain researchers and practitioners.

9.
Heliyon ; 9(5): e15749, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37305516

RESUMO

The plasmonic antenna probe is constructed using a silver rod embedded in a modified Mach-Zehnder interferometer (MZI) ad-drop filter. Rabi antennas are formed when space-time control reaches two levels of system oscillation and can be used as human brain sensor probes. Photonic neural networks are designed using brain-Rabi antenna communication, and transmissions are connected via neurons. Communication signals are carried by electron spin (up and down) and adjustable Rabi frequency. Hidden variables and deep brain signals can be obtained by external detection. A Rabi antenna has been developed by simulation using computer simulation technology (CST) software. Additionally, a communication device has been developed that uses the Optiwave program with Finite-Difference Time-Domain (OptiFDTD). The output signal is plotted using the MATLAB program with the parameters of the OptiFDTD simulation results. The proposed antenna oscillates in the frequency range of 192 THz to 202 THz with a maximum gain of 22.4 dBi. The sensitivity of the sensor is calculated along with the result of electron spin and applied to form a human brain connection. Moreover, intelligent machine learning algorithms are proposed to identify high-quality transmissions and predict the behavior of transmissions in the near future. During the process, a root mean square error (RMSE) of 2.3332(±0.2338) was obtained. Finally, it can be said that our proposed model can efficiently predict human mind, thoughts, behavior as well as action/reaction, which can be greatly helpful in the diagnosis of various neuro-degenerative/psychological diseases (such as Alzheimer's, dementia, etc.) and for security purposes.

10.
Artigo em Inglês | MEDLINE | ID: mdl-37347628

RESUMO

Early diagnosis of Alzheimer's disease (AD) is a very challenging problem and has been attempted through data-driven methods in recent years. However, considering the inherent complexity in decoding higher cognitive functions from spontaneous neuronal signals, these data-driven methods benefit from the incorporation of multimodal data. This work proposes an ensembled machine learning model with explainability (EXML) to detect subtle patterns in cortical and hippocampal local field potential signals (LFPs) that can be considered as a potential marker for AD in the early stage of the disease. The LFPs acquired from healthy and two types of AD animal models (n = 10 each) using linear multielectrode probes were endorsed by electrocardiogram and respiration signals for their veracity. Feature sets were generated from LFPs in temporal, spatial and spectral domains and were fed into selected machine-learning models for each domain. Using late fusion, the EXML model achieved an overall accuracy of 99.4%. This provided insights into the amyloid plaque deposition process as early as 3 months of the disease onset by identifying the subtle patterns in the network activities. Lastly, the individual and ensemble models were found to be robust when evaluated by randomly masking channels to mimic the presence of artefacts.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/diagnóstico , Aprendizado de Máquina , Hipocampo , Cognição , Diagnóstico Precoce
11.
Brain Inform ; 10(1): 14, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37341863

RESUMO

Virtual reality exposure therapy (VRET) is a novel intervention technique that allows individuals to experience anxiety-evoking stimuli in a safe environment, recognise specific triggers and gradually increase their exposure to perceived threats. Public-speaking anxiety (PSA) is a prevalent form of social anxiety, characterised by stressful arousal and anxiety generated when presenting to an audience. In self-guided VRET, participants can gradually increase their tolerance to exposure and reduce anxiety-induced arousal and PSA over time. However, creating such a VR environment and determining physiological indices of anxiety-induced arousal or distress is an open challenge. Environment modelling, character creation and animation, psychological state determination and the use of machine learning (ML) models for anxiety or stress detection are equally important, and multi-disciplinary expertise is required. In this work, we have explored a series of ML models with publicly available data sets (using electroencephalogram and heart rate variability) to predict arousal states. If we can detect anxiety-induced arousal, we can trigger calming activities to allow individuals to cope with and overcome distress. Here, we discuss the means of effective selection of ML models and parameters in arousal detection. We propose a pipeline to overcome the model selection problem with different parameter settings in the context of virtual reality exposure therapy. This pipeline can be extended to other domains of interest where arousal detection is crucial. Finally, we have implemented a biofeedback framework for VRET where we successfully provided feedback as a form of heart rate and brain laterality index from our acquired multimodal data for psychological intervention to overcome anxiety.

12.
Sensors (Basel) ; 23(7)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37050427

RESUMO

Underwater target detection techniques have been extensively applied to underwater vehicles for marine surveillance, aquaculture, and rescue applications. However, due to complex underwater environments and insufficient training samples, the existing underwater target recognition algorithm accuracy is still unsatisfactory. A long-term effort is essential to improving underwater target detection accuracy. To achieve this goal, in this work, we propose a modified YOLOv5s network, called YOLOv5s-CA network, by embedding a Coordinate Attention (CA) module and a Squeeze-and-Excitation (SE) module, aiming to concentrate more computing power on the target to improve detection accuracy. Based on the existing YOLOv5s network, the number of bottlenecks in the first C3 module was increased from one to three to improve the performance of shallow feature extraction. The CA module was embedded into the C3 modules to improve the attention power focused on the target. The SE layer was added to the output of the C3 modules to strengthen model attention. Experiments on the data of the 2019 China Underwater Robot Competition were conducted, and the results demonstrate that the mean Average Precision (mAP) of the modified YOLOv5s network was increased by 2.4%.

13.
Sci Rep ; 13(1): 2495, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36781920

RESUMO

Deceleration is considered a commonly practised means to assess Foetal Heart Rate (FHR) through visual inspection and interpretation of patterns in Cardiotocography (CTG). The precision of deceleration classification relies on the accurate estimation of corresponding event points (EP) from the FHR and the Uterine Contraction Pressure (UCP). This work proposes a deceleration classification pipeline by comparing four machine learning (ML) models, namely, Multilayer Perceptron (MLP), Random Forest (RF), Naïve Bayes (NB), and Simple Logistics Regression. Towards an automated classification of deceleration from EP using the pipeline, it systematically compares three approaches to create feature sets from the detected EP: (1) a novel fuzzy logic (FL)-based approach, (2) expert annotation by clinicians, and (3) calculated using National Institute of Child Health and Human Development guidelines. The classification results were validated using different popular statistical metrics, including receiver operating characteristic curve, intra-class correlation coefficient, Deming regression, and Bland-Altman Plot. The highest classification accuracy (97.94%) was obtained with MLP when the EP was annotated with the proposed FL approach compared to RF, which obtained 63.92% with the clinician-annotated EP. The results indicate that the FL annotated feature set is the optimal one for classifying deceleration from FHR.


Assuntos
Desaceleração , Frequência Cardíaca Fetal , Gravidez , Feminino , Criança , Humanos , Frequência Cardíaca Fetal/fisiologia , Teorema de Bayes , Cardiotocografia/métodos , Aprendizado de Máquina
14.
Brain Inform ; 10(1): 5, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36806042

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disease that causes irreversible damage to several brain regions, including the hippocampus causing impairment in cognition, function, and behaviour. Early diagnosis of the disease will reduce the suffering of the patients and their family members. Towards this aim, in this paper, we propose a Siamese Convolutional Neural Network (SCNN) architecture that employs the triplet-loss function for the representation of input MRI images as k-dimensional embeddings. We used both pre-trained and non-pretrained CNNs to transform images into the embedding space. These embeddings are subsequently used for the 4-way classification of Alzheimer's disease. The model efficacy was tested using the ADNI and OASIS datasets which produced an accuracy of 91.83% and 93.85%, respectively. Furthermore, obtained results are compared with similar methods proposed in the literature.

15.
Sensors (Basel) ; 23(2)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36679448

RESUMO

Connected and autonomous vehicles (CAVs) have witnessed significant attention from industries, and academia for research and developments towards the on-road realisation of the technology. State-of-the-art CAVs utilise existing navigation systems for mobility and travel path planning. However, reliable connectivity to navigation systems is not guaranteed, particularly in urban road traffic environments with high-rise buildings, nearby roads and multi-level flyovers. In this connection, this paper presents TAKEN-Traffic Knowledge-based Navigation for enabling CAVs in urban road traffic environments. A traffic analysis model is proposed for mining the sensor-oriented traffic data to generate a precise navigation path for the vehicle. A knowledge-sharing method is developed for collecting and generating new traffic knowledge from on-road vehicles. CAVs navigation is executed using the information enabled by traffic knowledge and analysis. The experimental performance evaluation results attest to the benefits of TAKEN in the precise navigation of CAVs in urban traffic environments.


Assuntos
Veículos Autônomos , Veículos Automotores , Viagem , Acidentes de Trânsito
16.
Pers Ubiquitous Comput ; 27(3): 807-830, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-33815032

RESUMO

The pandemic caused by the coronavirus disease 2019 (COVID-19) has produced a global health calamity that has a profound impact on the way of perceiving the world and everyday lives. This has appeared as the greatest threat of the time for the entire world in terms of its impact on human mortality rate and many other societal fronts or driving forces whose estimations are yet to be known. Therefore, this study focuses on the most crucial sectors that are severely impacted due to the COVID-19 pandemic, in particular reference to India. Considered based on their direct link to a country's overall economy, these sectors include economic and financial, educational, healthcare, industrial, power and energy, oil market, employment, and environment. Based on available data about the pandemic and the above-mentioned sectors, as well as forecasted data about COVID-19 spreading, four inclusive mathematical models, namely-exponential smoothing, linear regression, Holt, and Winters, are used to analyse the gravity of the impacts due to this COVID-19 outbreak which is also graphically visualized. All the models are tested using data such as COVID-19 infection rate, number of daily cases and deaths, GDP of India, and unemployment. Comparing the obtained results, the best prediction model is presented. This study aims to evaluate the impact of this pandemic on country-driven sectors and recommends some strategies to lessen these impacts on a country's economy.

17.
Biosensors (Basel) ; 12(12)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36551120

RESUMO

The human body is designed to experience stress and react to it, and experiencing challenges causes our body to produce physical and mental responses and also helps our body to adjust to new situations. However, stress becomes a problem when it continues to remain without a period of relaxation or relief. When a person has long-term stress, continued activation of the stress response causes wear and tear on the body. Chronic stress results in cancer, cardiovascular disease, depression, and diabetes, and thus is deeply detrimental to our health. Previous researchers have performed a lot of work regarding mental stress, using mainly machine-learning-based approaches. However, most of the methods have used raw, unprocessed data, which cause more errors and thereby affect the overall model performance. Moreover, corrupt data values are very common, especially for wearable sensor datasets, which may also lead to poor performance in this regard. This paper introduces a deep-learning-based method for mental stress detection by encoding time series raw data into Gramian Angular Field images, which results in promising accuracy while detecting the stress levels of an individual. The experiment has been conducted on two standard benchmark datasets, namely WESAD (wearable stress and affect detection) and SWELL. During the studies, testing accuracies of 94.8% and 99.39% are achieved for the WESAD and SWELL datasets, respectively. For the WESAD dataset, chest data are taken for the experiment, including the data of sensor modalities such as three-axis acceleration (ACC), electrocardiogram (ECG), body temperature (TEMP), respiration (RESP), etc.


Assuntos
Redes Neurais de Computação , Dispositivos Eletrônicos Vestíveis , Humanos , Aprendizado de Máquina , Eletrocardiografia , Estresse Psicológico
18.
Brain Inform ; 9(1): 19, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36048345

RESUMO

Brain signals are recorded using different techniques to aid an accurate understanding of brain function and to treat its disorders. Untargeted internal and external sources contaminate the acquired signals during the recording process. Often termed as artefacts, these contaminations cause serious hindrances in decoding the recorded signals; hence, they must be removed to facilitate unbiased decision-making for a given investigation. Due to the complex and elusive manifestation of artefacts in neuronal signals, computational techniques serve as powerful tools for their detection and removal. Machine learning (ML) based methods have been successfully applied in this task. Due to ML's popularity, many articles are published every year, making it challenging to find, compare and select the most appropriate method for a given experiment. To this end, this paper presents ABOT (Artefact removal Benchmarking Online Tool) as an online benchmarking tool which allows users to compare existing ML-driven artefact detection and removal methods from the literature. The characteristics and related information about the existing methods have been compiled as a knowledgebase (KB) and presented through a user-friendly interface with interactive plots and tables for users to search it using several criteria. Key characteristics extracted from over 120 articles from the literature have been used in the KB to help compare the specific ML models. To comply with the FAIR (Findable, Accessible, Interoperable and Reusable) principle, the source code and documentation of the toolbox have been made available via an open-access repository.

19.
Sensors (Basel) ; 22(15)2022 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-35957292

RESUMO

In the last few years, the Internet of things (IoT) has recently gained attention in developing various smart city applications such as smart healthcare, smart supply chain, smart home, smart grid, etc. The existing literature focuses on the smart healthcare system as a public emergency service (PES) to provide timely treatment to the patient. However, little attention is given to a distributed smart fire brigade system as a PES to protect human life and properties from severe fire damage. The traditional PES are developed on a centralised system, which requires high computation and does not ensure timely service fulfilment. Furthermore, these traditional PESs suffer from a lack of trust, transparency, data integrity, and a single point of failure issue. In this context, this paper proposes a Blockchain-Enabled Secure and Trusted (BEST) framework for PES in the smart city environment. The BEST framework focuses on providing a fire brigade service as a PES to the smart home based on IoT device information to protect it from serious fire damage. Further, we used two edge computing servers, an IoT controller and a service controller. The IoT and service controller are used for local storage and to enhance the data processing speed of PES requests and PES fulfilments, respectively. The IoT controller manages an access control list to keep track of registered IoT gateways and their IoT devices, avoiding misguiding the PES department. The service controller utilised the queue model to handle the PES requests based on the minimum service queue length. Further, various smart contracts are designed on the Hyperledger Fabric platform to automatically call a PES either in the presence or absence of the smart-home owner under uncertain environmental conditions. The performance evaluation of the proposed BEST framework indicates the benefits of utilising the distributed environment and the smart contract logic. The various simulation results are evaluated in terms of service queue length, utilisation, actual arrival time, expected arrival time, number of PES departments, number of PES providers, and end-to-end delay. These simulation results show the effectiveness and feasibility of the BEST framework.


Assuntos
Blockchain , Internet das Coisas , Cidades , Segurança Computacional , Humanos , Confiança
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...