Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Cell Cardiol ; 183: 1-13, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37579636

RESUMO

Cardiovascular calcification can occur in vascular and valvular structures and is commonly associated with calcium deposition and tissue mineralization leading to stiffness and dysfunction. Patients with chronic kidney disease and associated hyperphosphatemia have an elevated risk for coronary artery calcification (CAC) and calcific aortic valve disease (CAVD). However, there is mounting evidence to suggest that the susceptibility and pathobiology of calcification in these two cardiovascular structures may be different, yet clinically they are similarly treated. To better understand diversity in molecular and cellular processes that underlie hyperphosphatemia-induced calcification in vascular and valvular structures, we exposed aortic vascular smooth muscle cells (AVSMCs) and aortic valve interstitial cells (AVICs) to high (2.5 mM) phosphate (Ph) conditions in vitro, and examined cell-specific responses. To further identify hyperphosphatemic-specific responses, parallel studies were performed using osteogenic media (OM) as an alternative calcific stimulus. Consistent with clinical observations made by others, we show that AVSMCs are more susceptible to calcification than AVICs. In addition, bulk RNA-sequencing reveals that AVSMCs and AVICs activate robust ossification-programs in response to high phosphate or OM treatments, however, the signaling pathways, cellular processes and osteogenic-associated markers involved are cell- and treatment-specific. For example, compared to VSMCs, VIC-mediated calcification involves biological processes related to osteo-chondro differentiation and down regulation of 'actin cytoskeleton'-related genes, that are not observed in VSMCs. Furthermore, hyperphosphatemic-induced calcification in AVICs and AVSMCs is independent of P13K signaling, which plays a role in OM-treated cells. Together, this study provides a wealth of information suggesting that the pathogenesis of cardiovascular calcifications is significantly more diverse than previously appreciated.


Assuntos
Estenose da Valva Aórtica , Calcinose , Hiperfosfatemia , Calcificação Vascular , Humanos , Valva Aórtica/patologia , Estenose da Valva Aórtica/metabolismo , Calcinose/metabolismo , Músculo Liso Vascular/patologia , Hiperfosfatemia/metabolismo , Hiperfosfatemia/patologia , Células Cultivadas , Fosfatos , Calcificação Vascular/metabolismo
2.
Ann Thorac Surg ; 112(4): 1282-1289, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33039362

RESUMO

BACKGROUND: Elevated total cell-free DNA (TCF) concentration has been associated with critical illness in adults and elevated donor fraction (DF), the ratio of donor specific cell-free DNA to total cell-free DNA present in the recipient's plasma, is associated with rejection following cardiac transplantation. This study investigates relationships between TCF and clinical outcomes after heart transplantation. METHODS: A prospective, blinded, observational study of 87 heart transplantation recipients was performed. Samples were collected at transplantation, prior to endomyocardial biopsy, during treatment for rejection, and at hospital readmissions. Longitudinal clinical data were collected and entered into a RedCAP (Vanderbilt University) database. TCF and DF levels were correlated with endomyocardial biopsy and angiography results, as well as clinical outcomes. Logistic regression for modeling and repeated measures analysis using generalized linear modeling was used. The standard receiver operating characteristic curve, hazard ratios, and odds ratios were calculated. RESULTS: There were 257 samples from 87 recipients analyzed. TCF greater than 50 ng/mL were associated with increased mortality (P = .01, area under the curve 0.93, sensitivity 0.44, specificity 0.97) and treatment for infection (P < .005, area under the curve 0.68, sensitivity 0.45, specificity 0.96). Increased DF was not correlated with treatment for infection. DF was associated with rejection and cardiac allograft vasculopathy (P < .001), but TCF was not. CONCLUSIONS: TCF elevation predicted death and treatment for infection. DF elevation predicted histopathologic acute rejection and cardiac allograft vasculopathy. Surveillance of TCF and DF levels may inform treatment after heart transplantation.


Assuntos
Ácidos Nucleicos Livres/sangue , Transplante de Coração , Infecções/sangue , Infecções/mortalidade , Complicações Pós-Operatórias/sangue , Complicações Pós-Operatórias/mortalidade , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Valor Preditivo dos Testes , Prognóstico , Estudos Prospectivos , Método Simples-Cego , Adulto Jovem
3.
Mol Genet Genomic Med ; 8(4): e1152, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31985165

RESUMO

BACKGROUND: Ebstein's anomaly (EA) is a rare congenital heart disease of the tricuspid valve and right ventricle. Patients with EA often manifest with left ventricular noncompaction (LVNC), a cardiomyopathy. Despite implication of cardiac sarcomere genes in some cases, very little is understood regarding the genetic etiology of EA/LVNC. Our study describes a multigenerational family with at least 10 of 17 members affected by EA/LVNC. METHODS: We performed echocardiography on all family members and conducted exome sequencing of six individuals. After identifying candidate variants using two different bioinformatic strategies, we confirmed segregation with phenotype using Sanger sequencing. We investigated structural implications of candidate variants using protein prediction models. RESULTS: Exome sequencing analysis of four affected and two unaffected members identified a novel, rare, and damaging coding variant in the Kelch-like family member 26 (KLHL26) gene located on chromosome 19 at position 237 of the protein (GRCh37). This variant region was confirmed by Sanger sequencing in the remaining family members. KLHL26 (c.709C > T p.R237C) segregates only with EA/LVNC-affected individuals (FBAT p < .05). Investigating structural implications of the candidate variant using protein prediction models suggested that the KLHL26 variant disrupts electrostatic interactions when binding to part of the ubiquitin proteasome, specifically Cullin3 (CUL3), a component of E3 ubiquitin ligase. CONCLUSION: In this familial case of EA/LVNC, we have identified a candidate gene variant, KLHL26 (p.R237C), which may have an important role in ubiquitin-mediated protein degradation during cardiac development.


Assuntos
Anomalia de Ebstein/genética , Cardiopatias Congênitas/genética , Mutação com Perda de Função , Adulto , Sítios de Ligação , Criança , Pré-Escolar , Proteínas Culina/metabolismo , Anomalia de Ebstein/patologia , Feminino , Testes Genéticos , Cardiopatias Congênitas/patologia , Humanos , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Linhagem , Ligação Proteica
4.
PLoS One ; 15(1): e0227385, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31929557

RESUMO

Lifelong noninvasive rejection monitoring in heart transplant patients is a critical clinical need historically poorly met in adults and unavailable for children and infants. Cell-free DNA (cfDNA) donor-specific fraction (DF), a direct marker of selective donor organ injury, is a promising analytical target. Methodological differences in sample processing and DF determination profoundly affect quality and sensitivity of cfDNA analyses, requiring specialized optimization for low cfDNA levels typical of transplant patients. Using next-generation sequencing, we previously correlated elevated DF with acute cellular and antibody-mediated rejection (ACR and AMR) in pediatric and adult heart transplant patients. However, next-generation sequencing is limited by cost, TAT, and sensitivity, leading us to clinically validate a rapid, highly sensitive, quantitative genotyping test, myTAIHEART®, addressing these limitations. To assure pre-analytical quality and consider interrelated cfDNA measures, plasma preparation was optimized and total cfDNA (TCF) concentration, DNA fragmentation, and DF quantification were validated in parallel for integration into myTAIHEART reporting. Analytical validations employed individual and reconstructed mixtures of human blood-derived genomic DNA (gDNA), cfDNA, and gDNA sheared to apoptotic length. Precision, linearity, and limits of blank/detection/quantification were established for TCF concentration, DNA fragmentation ratio, and DF determinations. For DF, multiplexed high-fidelity amplification followed by quantitative genotyping of 94 SNP targets was applied to 1168 samples to evaluate donor options in staged simulations, demonstrating DF call equivalency with/without donor genotype. Clinical validation studies using 158 matched endomyocardial biopsy-plasma pairs from 76 pediatric and adult heart transplant recipients selected a DF cutoff (0.32%) producing 100% NPV for ≥2R ACR. This supports the assay's conservative intended use of stratifying low versus increased probability of ≥2R ACR. myTAIHEART is clinically validated for heart transplant recipients ≥2 months old and ≥8 days post-transplant, expanding opportunity for noninvasive transplant rejection assessment to infants and children and to all recipients >1 week post-transplant.


Assuntos
Biomarcadores/sangue , Ácidos Nucleicos Livres/sangue , Transplantes/metabolismo , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Rejeição de Enxerto , Transplante de Coração , Humanos , Lactente , Masculino , Doadores de Tecidos , Adulto Jovem
5.
Physiol Genomics ; 51(6): 177-185, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-31002586

RESUMO

Coarctation of the aorta (CoA) is a common congenital cardiovascular (CV) defect characterized by a stenosis of the descending thoracic aorta. Treatment exists, but many patients develop hypertension (HTN). Identifying the cause of HTN is challenging because of patient variability (e.g., age, follow-up duration, severity) and concurrent CV abnormalities. Our objective was to conduct RNA sequencing of aortic tissue from humans with CoA to identify a candidate gene for mechanistic studies of arterial dysfunction in a rabbit model of CoA devoid of the variability seen with humans. We present the first known evidence of natriuretic peptide receptor C (NPR-C; aka NPR3) downregulation in human aortic sections subjected to high blood pressure (BP) from CoA versus normal BP regions (validated to PCR). These changes in NPR-C, a gene associated with BP and proliferation, were replicated in the rabbit model of CoA. Artery segments from this model were used with human aortic endothelial cells to reveal the functional relevance of altered NPR-C activity. Results showed decreased intracellular calcium ([Ca2+]i) activity to C-type natriuretic peptide (CNP). Normal relaxation induced by CNP and atrial natriuretic peptide was impaired for aortic segments exposed to elevated BP from CoA. Inhibition of NPR-C (M372049) also impaired aortic relaxation and [Ca2+]i activity. Genotyping of NPR-C variants predicted to be damaging revealed that rs146301345 was enriched in our CoA patients, but sample size limited association with HTN. These results may ultimately be used to tailor treatment for CoA based on mechanical stimuli, genotyping, and/or changes in arterial function.


Assuntos
Aorta/metabolismo , Coartação Aórtica/metabolismo , Peptídeo Natriurético Tipo C/metabolismo , Animais , Aorta/efeitos dos fármacos , Coartação Aórtica/tratamento farmacológico , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Cálcio/metabolismo , Cálcio/farmacologia , Criança , Pré-Escolar , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/fisiologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Feminino , Genótipo , Humanos , Lactente , Masculino , Modelos Teóricos , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Oligopeptídeos , Quinoxalinas , Coelhos , Vasodilatação/efeitos dos fármacos , Vasodilatação/fisiologia
6.
Physiol Genomics ; 48(12): 912-921, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27789736

RESUMO

Hypoplastic left heart syndrome (HLHS) is a clinically and anatomically severe form of congenital heart disease (CHD). Although prior studies suggest that HLHS has a complex genetic inheritance, its etiology remains largely unknown. The goal of this study was to characterize a risk gene in HLHS and its effect on HLHS etiology and outcome. We performed next-generation sequencing on a multigenerational family with a high prevalence of CHD/HLHS, identifying a rare variant in the α-myosin heavy chain (MYH6) gene. A case-control study of 190 unrelated HLHS subjects was then performed and compared with the 1000 Genomes Project. Damaging MYH6 variants, including novel, missense, in-frame deletion, premature stop, de novo, and compound heterozygous variants, were significantly enriched in HLHS cases (P < 1 × 10-5). Clinical outcomes analysis showed reduced transplant-free survival in HLHS subjects with damaging MYH6 variants (P < 1 × 10-2). Transcriptome and protein expression analyses with cardiac tissue revealed differential expression of cardiac contractility genes, notably upregulation of the ß-myosin heavy chain (MYH7) gene in subjects with MYH6 variants (P < 1 × 10-3). We subsequently used patient-specific induced pluripotent stem cells (iPSCs) to model HLHS in vitro. Early stages of in vitro cardiomyogenesis in iPSCs derived from two unrelated HLHS families mimicked the increased expression of MYH7 observed in vivo (P < 1 × 10-2), while revealing defective cardiomyogenic differentiation. Rare, damaging variants in MYH6 are enriched in HLHS, affect molecular expression of contractility genes, and are predictive of poor outcome. These findings indicate that the etiology of MYH6-associated HLHS can be informed using iPSCs and suggest utility in future clinical applications.


Assuntos
Miosinas Cardíacas/genética , Síndrome do Coração Esquerdo Hipoplásico/genética , Mutação/genética , Cadeias Pesadas de Miosina/genética , Adolescente , Estudos de Casos e Controles , Diferenciação Celular/genética , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Masculino , Miócitos Cardíacos/fisiologia , Linhagem , Transcriptoma/genética , Regulação para Cima/genética
7.
Pediatr Res ; 79(2): 318-24, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26492284

RESUMO

BACKGROUND: Postsurgical bleeding causes significant morbidity and mortality in children undergoing surgery for congenital heart defects (CHD). 22q11.2 deletion syndrome (DS) is the second most common genetic risk factor for CHD. The deleted segment of chromosome 22q11.2 encompasses the gene encoding glycoprotein (GP) Ibß, which is required for expression of the GPIb-V-IX complex on the platelet surface, where it functions as the receptor for von Willebrand factor (VWF). Binding of GPIb-V-IX to VWF is important for platelets to initiate hemostasis. It is not known whether hemizygosity for the gene encoding GPIbß increases the risk for bleeding following cardiac surgery for patients with 22q11.2 DS. METHODS: We performed a case-control study of 91 pediatric patients who underwent cardiac surgery with cardiopulmonary bypass from 2004 to 2012 at Children's Hospital of Wisconsin. RESULTS: Patients with 22q11.2 DS had larger platelets and lower platelet counts, bled more excessively, and received more transfusion support with packed red blood cells in the early postoperative period relative to control patients. CONCLUSION: Presurgical genetic testing for 22q11.2 DS may help to identify a subset of pediatric cardiac surgery patients who are at increased risk for excessive bleeding and who may require more transfusion support in the postoperative period.


Assuntos
Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Deleção Cromossômica , Cromossomos Humanos Par 22 , Síndrome de DiGeorge/genética , Transfusão de Eritrócitos/estatística & dados numéricos , Cardiopatias Congênitas/cirurgia , Hemorragia Pós-Operatória/genética , Hemorragia Pós-Operatória/terapia , Criança , Pré-Escolar , Síndrome de DiGeorge/complicações , Síndrome de DiGeorge/diagnóstico , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Cardiopatias Congênitas/diagnóstico , Hospitais Pediátricos , Humanos , Lactente , Recém-Nascido , Masculino , Fenótipo , Hemorragia Pós-Operatória/diagnóstico , Estudos Retrospectivos , Fatores de Risco , Resultado do Tratamento , Wisconsin
8.
Physiol Genomics ; 44(9): 518-41, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22318994

RESUMO

The clinical significance of copy number variants (CNVs) in congenital heart disease (CHD) continues to be a challenge. Although CNVs including genes can confer disease risk, relationships between gene dosage and phenotype are still being defined. Our goal was to perform a quantitative analysis of CNVs involving 100 well-defined CHD risk genes identified through previously published human association studies in subjects with anatomically defined cardiac malformations. A novel analytical approach permitting CNV gene frequency "spectra" to be computed over prespecified regions to determine phenotype-gene dosage relationships was employed. CNVs in subjects with CHD (n = 945), subphenotyped into 40 groups and verified in accordance with the European Paediatric Cardiac Code, were compared with two control groups, a disease-free cohort (n = 2,026) and a population with coronary artery disease (n = 880). Gains (≥200 kb) and losses (≥100 kb) were determined over 100 CHD risk genes and compared using a Barnard exact test. Six subphenotypes showed significant enrichment (P ≤ 0.05), including aortic stenosis (valvar), atrioventricular canal (partial), atrioventricular septal defect with tetralogy of Fallot, subaortic stenosis, tetralogy of Fallot, and truncus arteriosus. Furthermore, CNV gene frequency spectra were enriched (P ≤ 0.05) for losses at: FKBP6, ELN, GTF2IRD1, GATA4, CRKL, TBX1, ATRX, GPC3, BCOR, ZIC3, FLNA and MID1; and gains at: PRKAB2, FMO5, CHD1L, BCL9, ACP6, GJA5, HRAS, GATA6 and RUNX1. Of CHD subjects, 14% had causal chromosomal abnormalities, and 4.3% had likely causal (significantly enriched), large, rare CNVs. CNV frequency spectra combined with precision phenotyping may lead to increased molecular understanding of etiologic pathways.


Assuntos
Algoritmos , Variações do Número de Cópias de DNA , Dosagem de Genes , Perfilação da Expressão Gênica , Cardiopatias Congênitas/genética , Modelos Genéticos , Modelos Estatísticos , Adulto , Idoso , Bancos de Espécimes Biológicos , Estudos de Casos e Controles , Criança , Feminino , Perfilação da Expressão Gênica/métodos , Predisposição Genética para Doença , Cardiopatias Congênitas/diagnóstico , Humanos , Masculino , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Sistema de Registros , Medição de Risco , Fatores de Risco , Adulto Jovem
9.
Physiol Genomics ; 42A(1): 52-60, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20551144

RESUMO

22q11.2 Deletion syndrome (22q11.2 DS) [DiGeorge syndrome type 1 (DGS1)] occurs in ∼1:3,000 live births; 75% of children with DGS1 have severe congenital heart disease requiring early intervention. The gold standard for detection of DGS1 is fluorescence in situ hybridization (FISH) with a probe at the TUPLE1 gene. However, FISH is costly and is typically ordered in conjunction with a karyotype analysis that takes several days. Therefore, FISH is underutilized and the diagnosis of 22q11.2 DS is frequently delayed, often resulting in profound clinical consequences. Our goal was to determine whether multiplexed, quantitative real-time PCR (MQPCR) could be used to detect the haploinsufficiency characteristic of 22q11.2 DS. A retrospective blinded study was performed on 382 subjects who had undergone congenital heart surgery. MQPCR was performed with a probe localized to the TBX1 gene on human chromosome 22, a gene typically deleted in 22q11.2 DS. Cycle threshold (C(t)) was used to calculate the relative gene copy number (rGCN). Confirmation analysis was performed with the Affymetrix 6.0 Genome-Wide SNP Array. With MQPCR, 361 subjects were identified as nondeleted with an rGCN near 1.0 and 21 subjects were identified as deleted with an rGCN near 0.5, indicative of a hemizygous deletion. The sensitivity (21/21) and specificity (361/361) of MQPCR to detect 22q11.2 deletions was 100% at an rGCN value drawn at 0.7. One of 21 subjects with a prior clinical (not genetically confirmed) DGS1 diagnosis was found not to carry the deletion, while another subject, not previously identified as DGS1, was detected as deleted and subsequently confirmed via microarray. The MQPCR assay is a rapid, inexpensive, sensitive, and specific assay that can be used to screen for 22q11.2 deletion syndrome. The assay is readily adaptable to high throughput.


Assuntos
Cromossomos Humanos Par 22/genética , Cardiopatias Congênitas/genética , Reação em Cadeia da Polimerase/métodos , Variações do Número de Cópias de DNA/genética , Síndrome de DiGeorge/genética , Humanos , Polimorfismo de Nucleotídeo Único/genética , Estudos Retrospectivos
10.
J Biol Chem ; 281(21): 14939-47, 2006 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-16543243

RESUMO

Embryonic factor 1 (FAC1) is one of the earliest expressed plant genes and encodes an AMP deaminase (AMPD), which is also an identified herbicide target. This report identifies an N-terminal transmembrane domain in Arabidopsis FAC1, explores subcellular fractionation, and presents a 3.3-A globular catalytic domain x-ray crystal structure with a bound herbicide-based transition state inhibitor that provides the first glimpse of a complete AMPD active site. FAC1 contains an (alpha/beta)(8)-barrel characterized by loops in place of strands 5 and 6 that places it in a small subset of the amidohydrolase superfamily with imperfect folds. Unlike tetrameric animal orthologs, FAC1 is a dimer and each subunit contains an exposed Walker A motif that may be involved in the dramatic combined K(m) (25-80-fold lower) and V(max) (5-6-fold higher) activation by ATP. Normal mode analysis predicts a hinge motion that flattens basic surfaces on each monomer that flank the dimer interface, which suggests a reversible association between the FAC1 globular catalytic domain and intracellular membranes, with N-terminal transmembrane and disordered linker regions serving as the anchor and attachment to the globular catalytic domain, respectively.


Assuntos
AMP Desaminase/química , AMP Desaminase/fisiologia , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/fisiologia , Arabidopsis/metabolismo , Membrana Celular/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Cristalografia por Raios X , Insetos , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Homologia de Sequência de Aminoácidos
11.
Biochemistry ; 44(14): 5551-9, 2005 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-15807549

RESUMO

Erythrocyte AMP deaminase [isoform E (AMPD3)] is activated in response to increased intracellular calcium levels in Tarui's disease, following exposure of ionophore-treated cells to extracellular calcium, and by the addition of calcium to freshly prepared hemolysates. However, the assumption that Ca(2+) is a positive effector of isoform E is inconsistent with the loss of sensitivity to this divalent cation following dilution of erythrocyte lysates or enzyme purification. Ca(2+) regulation of isoform E was studied by examining in vitro effects of calmodulin (CaM) on this enzyme and by monitoring the influence of CaM antagonists on purine catabolic flow in freshly prepared erythrocytes under various conditions of energy imbalance. Erythrocyte and recombinant isoform E both adsorb to immobilized Ca(2+)-CaM, and relative adsorption across a series of N-truncated recombinant enzymes localizes CaM binding determinants to within residues 65-89 of the AMPD3 polypeptide. Ca(2+)-CaM directly stimulates isoform E catalytic activity through a K(mapp) effect and also antagonizes the protein-lipid interaction between this enzyme and intracellular membranes that inhibits catalytic activity. AMP is the predominant purine catabolite in erythrocytes deprived of glucose or exposed to A23187 ionophore alone, whereas IMP accumulates when Ca(2+) is included under the latter conditions and also during autoincubation at 37 degrees C. Preincubation with a CaM antagonist significantly slows the accumulation of erythrocyte IMP under both conditions. The combined results reveal a protein-protein interaction between Ca(2+)-CaM and isoform E and identify a mechanism that advances our understanding of erythrocyte purine metabolism. Ca(2+)-CaM overcomes potent isoform E inhibitory mechanisms that function to maintain the total adenine nucleotide pool in mature erythrocytes, which are unable to synthesize AMP from IMP because of a developmental loss of adenylosuccinate synthetase. This may also explain why Tarui's disease erythrocytes exhibit accelerated adenine nucleotide depletion in response to an increase in intracellular Ca(2+) concentration. This regulatory mechanism could also play an important role in purine metabolism in other human tissues and cells where the AMPD3 gene is expressed.


Assuntos
AMP Desaminase/metabolismo , Cálcio/fisiologia , Calmodulina/metabolismo , Eritrócitos/enzimologia , AMP Desaminase/química , Nucleotídeos de Adenina/metabolismo , Adsorção , Calcimicina/farmacologia , Cloreto de Cálcio/farmacologia , Calmodulina/antagonistas & inibidores , Humanos , Inosina Monofosfato/metabolismo , Ligação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
12.
Artigo em Inglês | MEDLINE | ID: mdl-16511144

RESUMO

Adenosine 5'-monophosphate deaminase (AMPD) is a eukaryotic enzyme that converts adenosine 5'-monophosphate (AMP) to inosine 5'-monophosphate (IMP) and ammonia. AMPD from Arabidopsis thaliana (AtAMPD) was cloned into the baculoviral transfer vector p2Bac and co-transfected along with a modified baculoviral genome into Spodoptera frugiperda (Sf9) cells. The resulting recombinant baculovirus were plaque-purified, amplified and used to overexpress recombinant AtAMPD. Crystals of purified AtAMPD have been obtained to which coformycin 5'-phosphate, a transition-state inhibitor, is bound. Crystals belong to space group P6(2)22, with unit-cell parameters a = b = 131.325, c = 208.254 A, alpha = beta = 90, gamma = 120 degrees. Diffraction data were collected to 3.34 A resolution from a crystal in complex with coformycin 5'-phosphate and to 4.05 A resolution from a crystal of a mercury derivative.


Assuntos
AMP Desaminase/química , AMP Desaminase/metabolismo , Proteínas de Arabidopsis/química , Arabidopsis/enzimologia , Coformicina/metabolismo , Substâncias Macromoleculares/química , Organofosfatos/química , Coformicina/química , Cristalização , Cristalografia por Raios X , Coleta de Dados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...