Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 235(1): 234-246, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35377486

RESUMO

Renewed interests in the development of bioenergy, biochemicals, and biomaterials have elicited new strategies for engineering the lignin of biomass feedstock plants. This study shows, for the first time, that 3,4-dihydroxybenzoate (DHB) is compatible with the radical coupling reactions that assemble polymeric lignin in plants. We introduced a bacterial 3-dehydroshikimate dehydratase into hybrid poplar (Populus alba × grandidentata) to divert carbon flux away from the shikimate pathway, which lies upstream of lignin biosynthesis. Transgenic poplar wood had up to 33% less lignin with p-hydroxyphenyl units comprising as much as 10% of the lignin. Mild alkaline hydrolysis of transgenic wood released fewer ester-linked p-hydroxybenzoate groups than control trees, and revealed the novel incorporation of cell-wall-bound DHB, as well as glycosides of 3,4-dihydroxybenzoic acid (DHBA). Two-dimensional nuclear magnetic resonance (2D-NMR) analysis uncovered DHBA-derived benzodioxane structures suggesting that DHB moieties were integrated into the lignin polymer backbone. In addition, up to 40% more glucose was released from transgenic wood following ionic liquid pretreatment and enzymatic hydrolysis. This work highlights the potential of diverting carbon flux from the shikimate pathway for lignin engineering and describes a new type of 'zip-lignin' derived from the incorporation of DHB into poplar lignin.


Assuntos
Lignina , Populus , Hidroxibenzoatos , Lignina/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Madeira/química
2.
Plant Physiol ; 188(2): 984-996, 2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-34718804

RESUMO

Lignin, a polyphenolic polymer, is a major chemical constituent of the cell walls of terrestrial plants. The biosynthesis of lignin is a highly plastic process, as highlighted by an increasing number of noncanonical monomers that have been successfully identified in an array of plants. Here, we engineered hybrid poplar (Populus alba x grandidentata) to express chalcone synthase 3 (MdCHS3) derived from apple (Malus domestica) in lignifying xylem. Transgenic trees displayed an accumulation of the flavonoid naringenin in xylem methanolic extracts not inherently observed in wild-type trees. Nuclear magnetic resonance analysis revealed the presence of naringenin in the extract-free, cellulase-treated xylem lignin of MdCHS3-poplar, indicating the incorporation of this flavonoid-derived compound into poplar secondary cell wall lignins. The transgenic trees also displayed lower total cell wall lignin content and increased cell wall carbohydrate content and performed significantly better in limited saccharification assays than their wild-type counterparts.


Assuntos
Aciltransferases/genética , Aciltransferases/metabolismo , Flavanonas/metabolismo , Lignina/biossíntese , Lignina/genética , Populus/genética , Populus/metabolismo , Xilema/metabolismo , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Flavanonas/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Malus/genética , Malus/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Xilema/genética
3.
Evol Appl ; 13(1): 48-61, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31892943

RESUMO

Identifying genetic variants responsible for phenotypic variation under selective pressure has the potential to enable productive gains in natural resource conservation and management. Despite this potential, identifying adaptive candidate loci is not trivial, and linking genotype to phenotype is a major challenge in contemporary genetics. Many of the population genetic approaches commonly used to identify adaptive candidates will simultaneously detect false positives, particularly in nonmodel species, where experimental evidence is seldom provided for putative roles of the adaptive candidates identified by outlier approaches. In this study, we use outcomes from population genetics, phenotype association, and gene expression analyses as multiple lines of evidence to validate candidate genes. Using lodgepole and jack pine as our nonmodel study species, we analyzed 17 adaptive candidate loci together with 78 putatively neutral loci at 58 locations across Canada (N > 800) to determine whether relationships could be established between these candidate loci and phenotype related to mountain pine beetle susceptibility. We identified two candidate loci that were significant across all population genetic tests, and demonstrated significant changes in transcript abundance in trees subjected to wounding or inoculation with the mountain pine beetle fungal associate Grosmannia clavigera. Both candidates are involved in central physiological processes that are likely to be invoked in a trees response to stress. One of these two candidate loci showed a significant association with mountain pine beetle attack status in lodgepole pine. The spatial distribution of the attack-associated allele further coincides with other indicators of susceptibility in lodgepole pine. These analyses, in which population genetics was combined with laboratory and field experimental validation approaches, represent first steps toward linking genetic variation to the phenotype of mountain pine beetle susceptibility in lodgepole and jack pine, and provide a roadmap for more comprehensive analyses.

4.
Curr Opin Biotechnol ; 56: 147-155, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30529238

RESUMO

Lignocellulosic biomass represents an abundant source of cellulosic fibres and fermentable sugars. However, lignin, a polyphenolic constituent of secondary-thickened plant cell walls significantly contributes to biomass recalcitrance during industrial processing. Efforts to reduce plant total lignin content through genetic engineering have improved processing efficiency, but often incur an agronomic penalty. Alternatively, modifications that alter the composition of lignin and/or its interaction with other cell wall polymers display improved processing efficiency without compromising biomass yield. We propose that future efforts to improve woody feedstocks should focus on altering lignin composition and cell wall ultrastructure. Here, we describe potential future modifications to lignin and/or other cell wall characteristics that may serve as strategic targets in the production of trees that are tailor-made for specific pretreatments and end-product applications.


Assuntos
Biotecnologia/economia , Engenharia Genética , Lignina/metabolismo , Árvores/genética , Celulose/metabolismo , Lignina/química , Polimerização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...