Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(31): e2303974120, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37487065

RESUMO

Active chlorine in the atmosphere is poorly constrained and so is its role in the oxidation of the potent greenhouse gas methane, causing uncertainty in global methane budgets. We propose a photocatalytic mechanism for chlorine atom production that occurs when Sahara dust mixes with sea spray aerosol. The mechanism is validated by implementation in a global atmospheric model and thereby explaining the episodic, seasonal, and location-dependent 13C depletion in CO in air samples from Barbados [J.E. Mak, G. Kra, T. Sandomenico, P. Bergamaschi, J. Geophys. Res. Atmos. 108 (2003)], which remained unexplained for decades. The production of Cl can also explain the anomaly in the CO:ethane ratio found at Cape Verde [K. A. Read et al., J. Geophys. Res. Atmos. 114 (2009)], in addition to explaining the observation of elevated HOCl [M. J. Lawler et al., Atmos. Chem. Phys. 11, 7617-7628 (2011)]. Our model finds that 3.8 Tg(Cl) y-1 is produced over the North Atlantic, making it the dominant source of chlorine in the region; globally, chlorine production increases by 41%. The shift in the methane sink budget due to the increased role of Cl means that isotope-constrained top-down models fail to allocate 12 Tg y-1 (2% of total methane emissions) to 13C-depleted biological sources such as agriculture and wetlands. Since 2014, an increase in North African dust emissions has increased the 13C isotope of atmospheric CH4, thereby partially masking a much greater decline in this isotope, which has implications for the interpretation of the drivers behind the recent increase of methane in the atmosphere.

2.
Nat Commun ; 14(1): 4045, 2023 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-37422475

RESUMO

Atmospheric methane is both a potent greenhouse gas and photochemically active, with approximately equal anthropogenic and natural sources. The addition of chlorine to the atmosphere has been proposed to mitigate global warming through methane reduction by increasing its chemical loss. However, the potential environmental impacts of such climate mitigation remain unexplored. Here, sensitivity studies are conducted to evaluate the possible effects of increasing reactive chlorine emissions on the methane budget, atmospheric composition and radiative forcing. Because of non-linear chemistry, in order to achieve a reduction in methane burden (instead of an increase), the chlorine atom burden needs to be a minimum of three times the estimated present-day burden. If the methane removal target is set to 20%, 45%, or 70% less global methane by 2050 compared to the levels in the Representative Concentration Pathway 8.5 scenario (RCP8.5), our modeling results suggest that additional chlorine fluxes of 630, 1250, and 1880 Tg Cl/year, respectively, are needed. The results show that increasing chlorine emissions also induces significant changes in other important climate forcers. Remarkably, the tropospheric ozone decrease is large enough that the magnitude of radiative forcing decrease is similar to that of methane. Adding 630, 1250, and 1880 Tg Cl/year to the RCP8.5 scenario, chosen to have the most consistent current-day trends of methane, will decrease the surface temperature by 0.2, 0.4, and 0.6 °C by 2050, respectively. The quantity and method in which the chlorine is added, its interactions with climate pathways, and the potential environmental impacts on air quality and ocean acidity, must be carefully considered before any action is taken.


Assuntos
Poluição do Ar , Ozônio , Cloro , Metano/análise , Clima , Poluição do Ar/análise , Ozônio/análise , Atmosfera/química , Halogênios
3.
Nat Commun ; 13(1): 7744, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36517478

RESUMO

Saharan dust intrusions strongly impact Atlantic and Mediterranean coastal regions. Today, most operational dust forecasts extend only 2-5 days. Here we show that on timescales of weeks to months, North African dust emission and transport are impacted by sudden stratospheric warmings (SSWs), which establish a negative North Atlantic Oscillation-like surface signal. Chemical transport models show a large-scale dipolar dust response to SSWs, with the burden in the Eastern Mediterranean enhanced up to 30% and a corresponding reduction in West Africa. Observations of inhalable particulate (PM10) concentrations and aerosol optical depth confirm this dipole. On average, a single SSW causes 680-2460 additional premature deaths in the Eastern Mediterranean and prevents 1180-2040 premature deaths in West Africa from exposure to dust-source fine particulate (PM2.5). Currently, SSWs are predictable 1-2 weeks in advance. Altogether, the stratosphere represents an important source of subseasonal predictability for air quality over West Africa and the Eastern Mediterranean.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poeira/análise , Material Particulado/análise , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Aerossóis/análise , África do Norte , Monitoramento Ambiental
4.
Geophys Res Lett ; 49(8): e2021GL097287, 2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35866061

RESUMO

Aircraft measurement campaigns have revealed that super coarse dust (diameter >10 µm) surprisingly accounts for approximately a quarter of aerosols by mass in the atmosphere. However, most global aerosol models either underestimate or do not include super coarse dust abundance. To address this problem, we use brittle fragmentation theory to develop a parameterization for the emitted dust size distribution that includes emission of super coarse dust. We implement this parameterization in the Community Earth System Model (CESM) and find that it brings the model in good agreement with aircraft measurements of super coarse dust close to dust source regions. However, the CESM still underestimates super coarse dust in dust outflow regions. Thus, we conclude that the model underestimation of super coarse atmospheric dust is in part due to the underestimation of super coarse dust emission and likely in part due to errors in deposition processes.

5.
Ann Rev Mar Sci ; 14: 303-330, 2022 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-34416126

RESUMO

A key Earth system science question is the role of atmospheric deposition in supplying vital nutrients to the phytoplankton that form the base of marine food webs. Industrial and vehicular pollution, wildfires, volcanoes, biogenic debris, and desert dust all carry nutrients within their plumes throughout the globe. In remote ocean ecosystems, aerosol deposition represents an essential new source of nutrients for primary production. The large spatiotemporal variability in aerosols from myriad sources combined with the differential responses of marine biota to changing fluxes makes it crucially important to understand where, when, and how much nutrients from the atmosphere enter marine ecosystems. This review brings together existing literature, experimental evidence of impacts, and new atmospheric nutrient observations that can be compared with atmospheric and ocean biogeochemistry modeling. We evaluate the contribution and spatiotemporal variability of nutrient-bearing aerosols from desert dust, wildfire, volcanic, and anthropogenic sources, including the organic component, deposition fluxes, and oceanic impacts.


Assuntos
Ecossistema , Vento , Aerossóis/análise , Atmosfera , Nutrientes , Oceanos e Mares
6.
Sci Adv ; 7(28)2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34233872

RESUMO

Anthropogenic emissions to the atmosphere have increased the flux of nutrients, especially nitrogen, to the ocean, but they have also altered the acidity of aerosol, cloud water, and precipitation over much of the marine atmosphere. For nitrogen, acidity-driven changes in chemical speciation result in altered partitioning between the gas and particulate phases that subsequently affect long-range transport. Other important nutrients, notably iron and phosphorus, are affected, because their soluble fractions increase upon exposure to acidic environments during atmospheric transport. These changes affect the magnitude, distribution, and deposition mode of individual nutrients supplied to the ocean, the extent to which nutrient deposition interacts with the sea surface microlayer during its passage into bulk seawater, and the relative abundances of soluble nutrients in atmospheric deposition. Atmospheric acidity change therefore affects ecosystem composition, in addition to overall marine productivity, and these effects will continue to evolve with changing anthropogenic emissions in the future.

7.
Atmos Chem Phys ; 21(10): 8127-8167, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-37649640

RESUMO

Even though desert dust is the most abundant aerosol by mass in Earth's atmosphere, atmospheric models struggle to accurately represent its spatial and temporal distribution. These model errors are partially caused by fundamental difficulties in simulating dust emission in coarse-resolution models and in accurately representing dust microphysical properties. Here we mitigate these problems by developing a new methodology that yields an improved representation of the global dust cycle. We present an analytical framework that uses inverse modeling to integrate an ensemble of global model simulations with observational constraints on the dust size distribution, extinction efficiency, and regional dust aerosol optical depth. We then compare the inverse model results against independent measurements of dust surface concentration and deposition flux and find that errors are reduced by approximately a factor of two relative to current model simulations of the Northern Hemisphere dust cycle. The inverse model results show smaller improvements in the less dusty Southern Hemisphere, most likely because both the model simulations and the observational constraints used in the inverse model are less accurate. On a global basis, we find that the emission flux of dust with geometric diameter up to 20 µm (PM20) is approximately 5,000 Tg/year, which is greater than most models account for. This larger PM20 dust flux is needed to match observational constraints showing a large atmospheric loading of coarse dust. We obtain gridded data sets of dust emission, vertically integrated loading, dust aerosol optical depth, (surface) concentration, and wet and dry deposition fluxes that are resolved by season and particle size. As our results indicate that this data set is more accurate than current model simulations and the MERRA-2 dust reanalysis product, it can be used to improve quantifications of dust impacts on the Earth system.

8.
Nat Commun ; 10(1): 2628, 2019 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-31201307

RESUMO

Atmospheric dust is an important source of the micronutrient Fe to the oceans. Although relatively insoluble mineral Fe is assumed to be the most important component of dust, a relatively small yet highly soluble anthropogenic component may also be significant. However, quantifying the importance of anthropogenic Fe to the global oceans requires a tracer which can be used to identify and constrain anthropogenic aerosols in situ. Here, we present Fe isotope (δ56Fe) data from North Atlantic aerosol samples from the GEOTRACES GA03 section. While soluble aerosol samples collected near the Sahara have near-crustal δ56Fe, soluble aerosols from near North America and Europe instead have remarkably fractionated δ56Fe values (as light as -1.6‰). Here, we use these observations to fingerprint anthropogenic combustion sources, and to refine aerosol deposition modeling. We show that soluble anthropogenic aerosol Fe flux to the global surface oceans is highly likely to be underestimated, even in the dusty North Atlantic.

9.
Proc Natl Acad Sci U S A ; 116(26): 12720-12728, 2019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31182581

RESUMO

The supply of nutrients is a fundamental regulator of ocean productivity and carbon sequestration. Nutrient sources, sinks, residence times, and elemental ratios vary over broad scales, including those resulting from climate-driven changes in upper water column stratification, advection, and the deposition of atmospheric dust. These changes can alter the proximate elemental control of ecosystem productivity with cascading ecological effects and impacts on carbon sequestration. Here, we report multidecadal observations revealing that the ecosystem in the eastern region of the North Pacific Subtropical Gyre (NPSG) oscillates on subdecadal scales between inorganic phosphorus (P i ) sufficiency and limitation, when P i concentration in surface waters decreases below 50-60 nmol⋅kg-1 In situ observations and model simulations suggest that sea-level pressure changes over the northwest Pacific may induce basin-scale variations in the atmospheric transport and deposition of Asian dust-associated iron (Fe), causing the eastern portion of the NPSG ecosystem to shift between states of Fe and P i limitation. Our results highlight the critical need to include both atmospheric and ocean circulation variability when modeling the response of open ocean pelagic ecosystems under future climate change scenarios.


Assuntos
Ecossistema , Ferro/química , Fósforo/química , Organismos Aquáticos/crescimento & desenvolvimento , Organismos Aquáticos/metabolismo , Ciclo do Carbono , Ferro/metabolismo , Deficiências de Ferro , Microbiota , Oceano Pacífico , Periodicidade , Fósforo/deficiência , Fósforo/metabolismo , Clima Tropical
10.
Sci Adv ; 5(5): eaau7671, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31049393

RESUMO

Atmospheric deposition is a source of potentially bioavailable iron (Fe) and thus can partially control biological productivity in large parts of the ocean. However, the explanation of observed high aerosol Fe solubility compared to that in soil particles is still controversial, as several hypotheses have been proposed to explain this observation. Here, a statistical analysis of aerosol Fe solubility estimated from four models and observations compiled from multiple field campaigns suggests that pyrogenic aerosols are the main sources of aerosols with high Fe solubility at low concentration. Additionally, we find that field data over the Southern Ocean display a much wider range in aerosol Fe solubility compared to the models, which indicate an underestimation of labile Fe concentrations by a factor of 15. These findings suggest that pyrogenic Fe-containing aerosols are important sources of atmospheric bioavailable Fe to the open ocean and crucial for predicting anthropogenic perturbations to marine productivity.


Assuntos
Ferro/química , Aerossóis , Oceano Atlântico , Atmosfera/química , Poeira , Óxido Ferroso-Férrico/química , Oceano Índico , Modelos Químicos , Concentração Osmolar , Solo/química , Solubilidade
11.
Atmos Chem Phys ; 19(13): 8591-8617, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33273898

RESUMO

A total of 16 global chemistry transport models and general circulation models have participated in this study; 14 models have been evaluated with regard to their ability to reproduce the near-surface observed number concentration of aerosol particles and cloud condensation nuclei (CCN), as well as derived cloud droplet number concentration (CDNC). Model results for the period 2011-2015 are compared with aerosol measurements (aerosol particle number, CCN and aerosol particle composition in the submicron fraction) from nine surface stations located in Europe and Japan. The evaluation focuses on the ability of models to simulate the average across time state in diverse environments and on the seasonal and short-term variability in the aerosol properties. There is no single model that systematically performs best across all environments represented by the observations. Models tend to underestimate the observed aerosol particle and CCN number concentrations, with average normalized mean bias (NMB) of all models and for all stations, where data are available, of -24% and -35% for particles with dry diameters > 50 and > 120nm, as well as -36% and -34% for CCN at supersaturations of 0.2% and 1.0%, respectively. However, they seem to behave differently for particles activating at very low supersaturations (< 0.1 %) than at higher ones. A total of 15 models have been used to produce ensemble annual median distributions of relevant parameters. The model diversity (defined as the ratio of standard deviation to mean) is up to about 3 for simulated N3 (number concentration of particles with dry diameters larger than 3 nm) and up to about 1 for simulated CCN in the extra-polar regions. A global mean reduction of a factor of about 2 is found in the model diversity for CCN at a supersaturation of 0.2% (CCN0.2) compared to that for N3, maximizing over regions where new particle formation is important. An additional model has been used to investigate potential causes of model diversity in CCN and bias compared to the observations by performing a perturbed parameter ensemble (PPE) accounting for uncertainties in 26 aerosol-related model input parameters. This PPE suggests that biogenic secondary organic aerosol formation and the hygroscopic properties of the organic material are likely to be the major sources of CCN uncertainty in summer, with dry deposition and cloud processing being dominant in winter. Models capture the relative amplitude of the seasonal variability of the aerosol particle number concentration for all studied particle sizes with available observations (dry diameters larger than 50, 80 and 120 nm). The short-term persistence time (on the order of a few days) of CCN concentrations, which is a measure of aerosol dynamic behavior in the models, is underestimated on average by the models by 40% during winter and 20% in summer. In contrast to the large spread in simulated aerosol particle and CCN number concentrations, the CDNC derived from simulated CCN spectra is less diverse and in better agreement with CDNC estimates consistently derived from the observations (average NMB -13% and -22% for updraft velocities 0.3 and 0.6 ms-1, respectively). In addition, simulated CDNC is in slightly better agreement with observationally derived values at lower than at higher updraft velocities (index of agreement 0.64 vs. 0.65). The reduced spread of CDNC compared to that of CCN is attributed to the sublinear response of CDNC to aerosol particle number variations and the negative correlation between the sensitivities of CDNC to aerosol particle number concentration (∂N d/∂N a) and to updraft velocity (∂N d/∂w). Overall, we find that while CCN is controlled by both aerosol particle number and composition, CDNC is sensitive to CCN at low and moderate CCN concentrations and to the updraft velocity when CCN levels are high. Discrepancies are found in sensitivities ∂N d/∂N a and ∂N d/∂w; models may be predisposed to be too "aerosol sensitive" or "aerosol insensitive" in aerosol-cloud-climate interaction studies, even if they may capture average droplet numbers well. This is a subtle but profound finding that only the sensitivities can clearly reveal and may explain inter-model biases on the aerosol indirect effect.

12.
Nat Commun ; 9(1): 3446, 2018 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-30150685

RESUMO

Post-industrial increases in atmospheric black carbon (BC) have a large but uncertain warming contribution to Earth's climate. Particle size and mixing state determine the solar absorption efficiency of BC and also strongly influence how effectively BC is removed, but they have large uncertainties. Here we use a multiple-mixing-state global aerosol microphysics model and show that the sensitivity (range) of present-day BC direct radiative effect, due to current uncertainties in emission size distributions, is amplified 5-7 times (0.18-0.42 W m-2) when the diversity in BC mixing state is sufficiently resolved. This amplification is caused by the lifetime, core absorption, and absorption enhancement effects of BC, whose variability is underestimated by 45-70% in a single-mixing-state model representation. We demonstrate that reducing uncertainties in emission size distributions and how they change in the future, while also resolving modeled BC mixing state diversity, is now essential when evaluating BC radiative effects and the effectiveness of BC mitigation on future temperature changes.

13.
Nat Commun ; 9(1): 2614, 2018 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-29977041

RESUMO

Metal dissolution from atmospheric aerosol deposition to the oceans is important in enhancing and inhibiting phytoplankton growth rates and modifying plankton community structure, thus impacting marine biogeochemistry. Here we review the current state of knowledge on the causes and effects of the leaching of multiple trace metals from natural and anthropogenic aerosols. Aerosol deposition is considered both on short timescales over which phytoplankton respond directly to aerosol metal inputs, as well as longer timescales over which biogeochemical cycles are affected by aerosols.


Assuntos
Aerossóis/análise , Organismos Aquáticos/crescimento & desenvolvimento , Poluentes Ambientais/análise , Metais/análise , Oligoelementos/análise , Ecossistema , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiologia , Modelos Teóricos , Água do Mar/química , Água do Mar/microbiologia , Microbiologia da Água
14.
Nat Commun ; 9(1): 1593, 2018 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-29686300

RESUMO

Atmospheric iron affects the global carbon cycle by modulating ocean biogeochemistry through the deposition of soluble iron to the ocean. Iron emitted by anthropogenic (fossil fuel) combustion is a source of soluble iron that is currently considered less important than other soluble iron sources, such as mineral dust and biomass burning. Here we show that the atmospheric burden of anthropogenic combustion iron is 8 times greater than previous estimates by incorporating recent measurements of anthropogenic magnetite into a global aerosol model. This new estimation increases the total deposition flux of soluble iron to southern oceans (30-90 °S) by 52%, with a larger contribution of anthropogenic combustion iron than dust and biomass burning sources. The direct radiative forcing of anthropogenic magnetite is estimated to be 0.021 W m-2 globally and 0.22 W m-2 over East Asia. Our results demonstrate that anthropogenic combustion iron is a larger and more complex climate forcer than previously thought, and therefore plays a key role in the Earth system.

15.
Nat Commun ; 9(1): 241, 2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29339783

RESUMO

Feedbacks between the global dust cycle and the climate system might have amplified past climate changes. Yet, it remains unclear what role the dust-climate feedback will play in future anthropogenic climate change. Here, we estimate the direct dust-climate feedback, arising from changes in the dust direct radiative effect (DRE), using a simple theoretical framework that combines constraints on the dust DRE with a series of climate model results. We find that the direct dust-climate feedback is likely in the range of -0.04 to +0.02 Wm -2 K-1, such that it could account for a substantial fraction of the total aerosol feedbacks in the climate system. On a regional scale, the direct dust-climate feedback is enhanced by approximately an order of magnitude close to major source regions. This suggests that it could play an important role in shaping the future climates of Northern Africa, the Sahel, the Mediterranean region, the Middle East, and Central Asia.

16.
Clim Dyn ; 47(11): 3517-3545, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32742080

RESUMO

The second West African Monsoon Modeling and Evaluation Project Experiment (WAMME II) is designed to improve understanding of the possible roles and feedbacks of sea surface temperature (SST), land use land cover change (LULCC), and aerosols forcings in the Sahel climate system at seasonal to decadal scales. The project's strategy is to apply prescribed observationally based anomaly forcing, i.e., "idealized but realistic" forcing, in simulations by climate models. The goal is to assess these forcings' effects in producing/amplifying seasonal and decadal climate variability in the Sahel between the 1950s and the 1980s, which is selected to characterize the great drought period of the last century. This is the first multi-model experiment specifically designed to simultaneously evaluate such relative contributions. The WAMME II models have consistently demonstrated that SST forcing is a major contributor to the 20th century Sahel drought. Under the influence of the maximum possible SST forcing, the ensemble mean of WAMME II models can produce up to 60% of the precipitation difference during the period. The present paper also addresses the role of SSTs in triggering and maintaining the Sahel drought. In this regard, the consensus of WAMME II models is that both Indian and Pacific Ocean SSTs greatly contributed to the drought, with the former producing an anomalous displacement of the Intertropical Convergence Zone (ITCZ) before the WAM onset, and the latter mainly contributes to the summer WAM drought. The WAMME II models also show that the impact of LULCC forcing on the Sahel climate system is weaker than that of SST forcing, but still of first order magnitude. According to the results, under LULCC forcing the ensemble mean of WAMME II models can produces about 40% of the precipitation difference between the 1980s and the 1950s. The role of land surface processes in responding to and amplifying the drought is also identified. The results suggest that catastrophic consequences are likely to occur in the regional Sahel climate when SST anomalies in individual ocean basins and in land conditions combine synergistically to favor drought.

17.
Environ Sci Technol ; 46(19): 10390-404, 2012 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-22994868

RESUMO

This paper reviews our knowledge of the measurement and modeling of mineral dust emissions to the atmosphere, its transport and deposition to the ocean, the release of iron from the dust into seawater, and the possible impact of that nutrient on marine biogeochemistry and climate. Of particular concern is our poor understanding of the mechanisms and quantities of dust deposition as well as the extent of iron solubilization from the dust once it enters the ocean. Model estimates of dust deposition in remote oceanic regions vary by more than a factor of 10. The fraction of the iron in dust that is available for use by marine phytoplankton is still highly uncertain. There is an urgent need for a long-term marine atmospheric surface measurement network, spread across all oceans. Because the southern ocean is characterized by large areas with high nitrate but low chlorophyll surface concentrations, that region is particularly sensitive to the input of dust and iron. Data from this region would be valuable, particularly at sites downwind from known dust source areas in South America, Australia, and South Africa. Coordinated field experiments involving both atmospheric and marine measurements are recommended to address the complex and interlinked processes and role of dust/Fe fertilization on marine biogeochemistry and climate.


Assuntos
Atmosfera , Poeira , Minerais , Oceanos e Mares , Atmosfera/química , Austrália , Clorofila , Poeira/análise , Ferro/química , Biologia Marinha/métodos , Modelos Teóricos , Pesquisa/tendências , Água do Mar/química , África do Sul
18.
Science ; 334(6061): 1385-8, 2011 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-22116027

RESUMO

Assessing the impact of future anthropogenic carbon emissions is currently impeded by uncertainties in our knowledge of equilibrium climate sensitivity to atmospheric carbon dioxide doubling. Previous studies suggest 3 kelvin (K) as the best estimate, 2 to 4.5 K as the 66% probability range, and nonzero probabilities for much higher values, the latter implying a small chance of high-impact climate changes that would be difficult to avoid. Here, combining extensive sea and land surface temperature reconstructions from the Last Glacial Maximum with climate model simulations, we estimate a lower median (2.3 K) and reduced uncertainty (1.7 to 2.6 K as the 66% probability range, which can be widened using alternate assumptions or data subsets). Assuming that paleoclimatic constraints apply to the future, as predicted by our model, these results imply a lower probability of imminent extreme climatic change than previously thought.

19.
Ann Rev Mar Sci ; 1: 245-78, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-21141037

RESUMO

Atmospheric inputs of iron to the open ocean are hypothesized to modulate ocean biogeochemistry. This review presents an integration of available observations of atmospheric iron and iron deposition, and also covers bioavailable iron distributions. Methods for estimating temporal variability in ocean deposition over the recent past are reviewed. Desert dust iron is estimated to represent 95% of the global atmospheric iron cycle, and combustion sources of iron are responsible for the remaining 5%. Humans may be significantly perturbing desert dust (up to 50%). The sources of bioavailable iron are less well understood than those of iron, partly because we do not know what speciation of the iron is bioavailable. Bioavailable iron can derive from atmospheric processing of relatively insoluble desert dust iron or from direct emissions of soluble iron from combustion sources. These results imply that humans could be substantially impacting iron and bioavailable iron deposition to ocean regions, but there are large uncertainties in our understanding.


Assuntos
Atmosfera/química , Ferro/química , Modelos Químicos , Água do Mar/química , Aerossóis/química , Animais , Poeira/análise , Humanos , Oceanos e Mares , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...