Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 15357, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965313

RESUMO

Halide perovskite (HPs) nanostructures have recently gained extensive worldwide attentions because of their remarkable optoelectronic properties and fast developments. However, intrinsic instability against environmental factors-i.e., temperature, humidity, illumination, and oxygen-restricted their real-life applications. HPs are typically synthesized as colloids by employing organic solvents and ligands. Consequently, the precise control and tuning of complex 3D perovskite morphologies are challenging and have hardly been achieved by conventional fabrication methods. Here, we combine the benefits of self-assembly of biomolecules and an ion exchange reaction (IER) approach to customize HPs spatial shapes and composition. Initially, we apply a biomineralization approach, using biological templates (such as biopolymers, proteins, or protein assemblies), modulating the morphology of MCO3 (M = Ca2+, Ba2+) nano/microstructures. We then show that the morphology of the materials can be maintained throughout an IER process to form surface HPs with a wide variety of morphologies. The fabricated core-shell structures of metal carbonates and HPs introduce nano/microcomposites that can be sculpted into a wide diversity of 3D architectures suitable for various potential applications such as sensors, detectors, catalysis, etc. As a prototype, we fabricate disposable humidity sensors with an 11-95% detection range by casting the formed bio-templated nano/micro-composites on paper substrate.

2.
Analyst ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38961728

RESUMO

Reagentless molecular-imprinted polymer (MIP) electrochemical biosensors can offer the next generation of biosensing platforms for the detection of biomarkers owing to their simplicity, cost-efficacy, tunability, robustness, and accuracy. In this work, a novel combination of Prussian blue (PB), coated as an embedded redox probe on a gold working electrode (GWE), and a signal-off MIP assay has been proposed in an electrochemical format for the detection of troponin I (TnI) in biofluids. TnI is a variant exclusive to heart muscles, and its elevated level in the bloodstream is indicative of acute myocardial infarction (AMI). The proposed lab-manufactured PB/MIP electrochemical biosensor, consisting of a simple signal-off MIP assay and a PB redox probe embedded on the GWE surface, is the first of its kind that allows for reagentless, label-free, and single-step electrochemical biosensing of proteins. The preparation steps of the biosensor were fully characterized by cyclic voltammetry (CV), atomic force microscopy (AFM), and Raman spectroscopy. Finally, the performance of the optimized biosensor was investigated through the determination of various concentrations of TnI, ranging from 10 to 100 pg mL-1 within 5 min, in serum and plasma with limits of detection less than 3.6 pg mL-1, and evaluation of selectivity towards TnI using some relevant proteins that exist in biofluids with higher concentrations.

3.
Angew Chem Int Ed Engl ; : e202402808, 2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38764376

RESUMO

Multimeric aptamers have gained more attention than their monomeric counterparts due to providing more binding sites for target analytes, leading to increased affinity. This work attempted to engineer the surface-based generation of multimeric aptamers by employing the room temperature rolling circle amplification (RCA) technique and chemically modified primers for developing a highly sensitive and selective electrochemical aptasensor. The multimeric aptamers, generated through surface RCA, are hybridized to modified spacer primers, facilitating the positioning of the aptamers in the proximity of sensing surfaces. These multimeric aptamers can be used as bio-receptors for capturing specific targets. The surface amplification process was fully characterized, and the optimal amplification time for biosensing purposes was determined, using SARS-CoV-2 spike protein (SP). Interestingly, multimeric aptasensors produced considerably higher response signals and affinity (more than 10-fold), as well as higher sensitivity (almost 4-fold) compared to monomeric aptasensors. Furthermore, the impact of surface structures on the response signals was studied by utilizing both flat working electrodes (WEs) and nano-/microislands (NMIs) WEs. The NMIs multimeric aptasensors showed significantly higher sensitivity in buffer and saliva media with the limit of detection less than 2 fg/ml. Finally, the developed NMIs multimeric aptasensors were clinically challenged with several saliva patient samples.

4.
Nanoscale ; 16(19): 9583-9592, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38682564

RESUMO

Nano/microfluidic-based nucleic acid tests have been proposed as a rapid and reliable diagnostic technology. Two key steps for many of these tests are target nucleic acid (NA) immobilization followed by an enzymatic reaction on the captured NAs to detect the presence of a disease-associated sequence. NA capture within a geometrically confined volume is an attractive alternative to NA surface immobilization that eliminates the need for sample pre-treatment (e.g. label-based methods such as lateral flow assays) or use of external actuators (e.g. dielectrophoresis) that are required for most nano/microfluidic-based NA tests. However, geometrically confined spaces hinder sample loading while making it challenging to capture, subsequently, retain and simultaneously expose target NAs to required enzymes. Here, using a nanofluidic device that features real-time confinement control via pneumatic actuation of a thin membrane lid, we demonstrate the loading of digital nanocavities by target NAs and exposure of target NAs to required enzymes/co-factors while the NAs are retained. In particular, as proof of principle, we amplified single-stranded DNAs (M13mp18 plasmid vector) in an array of nanocavities via two isothermal amplification approaches (loop-mediated isothermal amplification and rolling circle amplification).


Assuntos
Dispositivos Lab-On-A-Chip , Técnicas de Amplificação de Ácido Nucleico , DNA de Cadeia Simples/química , Técnicas Analíticas Microfluídicas/instrumentação , Nanotecnologia/instrumentação , Ácidos Nucleicos/análise , DNA/química , DNA/análise
5.
Lab Chip ; 23(24): 5107-5119, 2023 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-37921001

RESUMO

Portable sample-to-answer devices with applications in point-of-care settings have emerged to obviate the necessity of centralized laboratories for biomarker analysis. In this work, a smartphone-operated and additively manufactured multiplexed electrochemical device (AMMED) is presented for the portable detection of biomarkers in blood and saliva. AMMED is comprised of a customized portable potentiostat with a multiplexing feature, a 3D-printed sample collection cartridge to handle three samples of saliva and blood at the same time, a smartphone application to remotely control the potentiostat, and a 3D-printed-based multiplexed microfluidic electrochemical biosensor (test chip). Here, by employing additive manufacturing techniques, a simple, cleanroom-free, and scalable approach was proposed for the fabrication of the test chip. Moreover, these techniques can bring about easy integration of AMMED components. Additionally, the test chip can be compatible with different affinity-based bioassays which can be implemented in a multiplexed manner for detection. The AMMED components were successfully characterized in terms of electrochemical and fluidic performance. Particularly, to demonstrate the biosensing capabilities of the device, the spike protein of the SARS-CoV-2 omicron variant and a well-established aptameric assay were selected as the representative biomarker and the bioassay, respectively. The proposed device accurately and selectively detected the target of interest in a rapid (5 min) and multiplex manner with a dynamic detection range of 1-10 000 pg ml-1 in different media, and the clinical feasibility was assessed by several saliva patient samples. AMMED offers a versatile sample-to-answer platform that can be used for the detection of various biomarkers present in biofluids.


Assuntos
Técnicas Biossensoriais , Aplicativos Móveis , Humanos , Sistemas Automatizados de Assistência Junto ao Leito , Microfluídica , Smartphone , Biomarcadores/análise , Técnicas Eletroquímicas
6.
Lab Chip ; 23(18): 4134-4145, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37656450

RESUMO

Colorimetric readout for the detection of infectious diseases is gaining traction at the point of care/need owing to its ease of analysis and interpretation, and integration potential with highly specific loop-mediated amplification (LAMP) assays. However, coupling colorimetric readout with LAMP is rife with challenges including, rapidity, inter-user variability, colorimetric signal quantification, and user involvement in sequential steps of the LAMP assay, hindering its application. To address these challenges, for the first time, we propose a remotely smartphone-operated automated setup consisting of (i) an additively manufactured microfluidic cartridge, (ii) a portable reflected-light imaging setup with controlled epi-illumination (PRICE) module, and (iii) a control and data analysis module. The microfluidic cartridge facilitates sample collection, lysis, mixing of amplification reagents stored on-chip, and subsequent isothermal heating for initiation of amplification in a novel way by employing tunable elastomeric chambers and auxiliary components (heaters and linear actuators). PRICE offers a new imaging setup that captures the colorimetric change of the amplification media over a plasmonic nanostructured substrate in a controlled and noise-free environment for rapid minute-scale nucleic acid detection. The control and data analysis module employs microprocessors to automate cartridge operation in tandem with the imaging module. The different device components were characterized individually and finally, as a proof of concept, SARS-CoV-2 wild-type RNA was detected with a turnaround time of 13 minutes, showing the device's clinical feasibility. The suggested automated device can be adopted in future iterations for other detection and molecular assays that require sequential fluid handling steps.


Assuntos
COVID-19 , Humanos , COVID-19/diagnóstico , Colorimetria , Microfluídica , SARS-CoV-2 , Bioensaio
7.
Nat Nanotechnol ; 18(8): 922-932, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37264088

RESUMO

Deployment of nucleic acid amplification assays for diagnosing pathogens in point-of-care settings is a challenge due to lengthy preparatory steps. We present a molecular diagnostic platform that integrates a fabless plasmonic nano-surface into an autonomous microfluidic cartridge. The plasmonic 'hot' electron injection in confined space yields a ninefold kinetic acceleration of RNA/DNA amplification at single nucleotide resolution by one-step isothermal loop-mediated and rolling circle amplification reactions. Sequential flow actuation with nanoplasmonic accelerated microfluidic colorimetry and in conjugation with machine learning-assisted analysis (using our 'QolorEX' device) offers an automated diagnostic platform for multiplexed amplification. The versatility of QolorEX is demonstrated by detecting respiratory viruses: SARS-CoV-2 and its variants at the single nucleotide polymorphism level, H1N1 influenza A, and bacteria. For COVID-19 saliva samples, with an accuracy of 95% on par with quantitative polymerase chain reaction and a sample-to-answer time of 13 minutes, QolorEX is expected to advance the monitoring and rapid diagnosis of pathogens.


Assuntos
COVID-19 , Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Ácidos Nucleicos , Humanos , Microfluídica , Colorimetria , Vírus da Influenza A Subtipo H1N1/genética , COVID-19/diagnóstico , SARS-CoV-2/genética , Técnicas de Diagnóstico Molecular , RNA Viral/genética , Sensibilidade e Especificidade
8.
ACS Nano ; 17(13): 12052-12071, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37366177

RESUMO

Extracellular vesicles (EVs) are continually released from cancer cells into biofluids, carrying actionable molecular fingerprints of the underlying disease with considerable diagnostic and therapeutic potential. The scarcity, heterogeneity and intrinsic complexity of tumor EVs present a major technological challenge in real-time monitoring of complex cancers such as glioblastoma (GBM). Surface-enhanced Raman spectroscopy (SERS) outputs a label-free spectroscopic fingerprint for EV molecular profiling. However, it has not been exploited to detect known biomarkers at the single EV level. We developed a multiplex fluidic device with embedded arrayed nanocavity microchips (MoSERS microchip) that achieves 97% confinement of single EVs in a minute amount of fluid (<10 µL) and enables molecular profiling of single EVs with SERS. The nanocavity arrays combine two featuring characteristics: (1) An embedded MoS2 monolayer that enables label-free isolation and nanoconfinement of single EVs due to physical interaction (Coulomb and van der Waals) between the MoS2 edge sites and the lipid bilayer; and (2) A layered plasmonic cavity that enables sufficient electromagnetic field enhancement inside the cavities to obtain a single EV level signal resolution for stratifying the molecular alterations. We used the GBM paradigm to demonstrate the diagnostic potential of the SERS single EV molecular profiling approach. The MoSERS multiplexing fluidic achieves parallel signal acquisition of glioma molecular variants (EGFRvIII oncogenic mutation and MGMT expression) in GBM cells. The detection limit of 1.23% was found for stratifying these key molecular variants in the wild-type population. When interfaced with a convolutional neural network (CNN), MoSERS improved diagnostic accuracy (87%) with which GBM mutations were detected in 12 patient blood samples, on par with clinical pathology tests. Thus, MoSERS demonstrates the potential for molecular stratification of cancer patients using circulating EVs.


Assuntos
Neoplasias Encefálicas , Vesículas Extracelulares , Glioblastoma , Glioma , Humanos , Glioblastoma/diagnóstico , Glioblastoma/genética , Glioblastoma/metabolismo , Molibdênio/metabolismo , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Glioma/patologia , Vesículas Extracelulares/química , Análise Espectral Raman
9.
ACS Sens ; 8(6): 2149-2158, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37207303

RESUMO

Cryptosporidium parvum is a high-risk and opportunistic waterborne parasitic pathogen with highly infectious oocysts that can survive harsh environmental conditions for long periods. Current state-of-the-art methods are limited to lengthy imaging and antibody-based detection techniques that are slow, labor-intensive, and demand trained personnel. Therefore, the development of new sensing platforms for rapid and accurate identification at the point-of-care (POC) is essential to improve public health. Herein, we propose a novel electrochemical microfluidic aptasensor based on hierarchical 3D gold nano-/microislands (NMIs), functionalized with aptamers specific to C. parvum. We used aptamers as robust synthetic biorecognition elements with a remarkable ability to bind and discriminate among molecules to develop a highly selective biosensor. Also, the 3D gold NMIs feature a large active surface area that provides high sensitivity and a low limit of detection (LOD), especially when they are combined with aptamers,. The performance of the NMI aptasensor was assessed by testing the biosensor's ability to detect different concentrations of C. parvum oocysts spiked in different sample matrices, i.e., buffer, tap water, and stool, within 40 min detection time. The electrochemical measurements showed an acceptable LOD of 5 oocysts mL-1 in buffer medium, as well as 10 oocysts mL-1 in stool and tap water media, over a wide linear range of 10-100,000 oocysts mL-1. Moreover, the NMI aptasensor recognized C. parvum oocysts with high selectivity while exhibiting no significant cross-reactivity to other related coccidian parasites. The specific feasibility of the aptasensor was further demonstrated by the detection of the target C. parvum in patient stool samples. Our assay showed coherent results with microscopy and real-time quantitative polymerase chain reaction, achieving high sensitivity and specificity with a significant signal difference (p < 0.001). Therefore, the proposed microfluidic electrochemical biosensor platform could be a stepping stone for the development of rapid and accurate detection of parasites at the POC.


Assuntos
Técnicas Biossensoriais , Criptosporidiose , Cryptosporidium parvum , Cryptosporidium , Animais , Humanos , Microfluídica , Criptosporidiose/diagnóstico , Água , Oligonucleotídeos , Oocistos , Ouro/química
10.
Nanoscale ; 15(7): 2997-3031, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36722934

RESUMO

Halide perovskite nanocrystals (HPNCs) have emerged at the forefront of nanomaterials research over the past two decades. The physicochemical and optoelectronic properties of these inorganic semiconductor nanoparticles can be modulated through the introduction of various ligands. The use of biomolecules as ligands has been demonstrated to improve the stability, luminescence, conductivity and biocompatibility of HPNCs. The rapid advancement of this field relies on a strong understanding of how the structure and properties of biomolecules influences their interactions with HPNCs, as well as their potential to extend applications of HPNCs towards biological applications. This review addresses the role of several classes of biomolecules (amino acids, proteins, carbohydrates, nucleotides, etc.) that have shown promise for improving the performance of HPNCs and their potential applications. Specifically, we have reviewed the recent advances on incorporating biomolecules with HP nanomaterials on the formation, physicochemical properties, and stability of HP compounds. We have also shed light on the potential for using HPs in biological and environmental applications by compiling some recent of proof-of-concept demonstrations. Overall, this review aims to guide the field towards incorporating biomolecules into the next-generation of high-performance HPNCs for biological and environmental applications.


Assuntos
Compostos Inorgânicos , Nanopartículas , Compostos de Cálcio , Óxidos
11.
Adv Healthc Mater ; 12(5): e2202123, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36443009

RESUMO

Extracellular vesicles (EVs) are shed from cancer cells into body fluids, enclosing molecular information about the underlying disease with the potential for being the target cancer biomarker in emerging diagnosis approaches such as liquid biopsy. Still, the study of EVs presents major challenges due to their heterogeneity, complexity, and scarcity. Recently, liquid biopsy platforms have allowed the study of tumor-derived materials, holding great promise for early-stage diagnosis and monitoring of cancer when interfaced with novel adaptations of optical readouts and advanced machine learning analysis. Here, recent advances in labeled and label-free optical techniques such as fluorescence, plasmonic, and chromogenic-based systems interfaced with nanostructured sensors like nanoparticles, nanoholes, and nanowires, and diverse machine learning analyses are reviewed. The adaptability of the different optical methods discussed is compared and insights are provided into prospective avenues for the translation of the technological approaches for cancer diagnosis. It is discussed that the inherent augmented properties of nanostructures enhance the sensitivity of the detection of EVs. It is concluded by reviewing recent integrations of nanostructured-based optical readouts with diverse machine learning models as novel analysis ventures that can potentially increase the capability of the methods to the point of translation into diagnostic applications.


Assuntos
Vesículas Extracelulares , Nanopartículas , Nanoestruturas , Neoplasias , Humanos , Estudos Prospectivos , Neoplasias/diagnóstico por imagem , Neoplasias/patologia
12.
Adv Healthc Mater ; 12(1): e2201501, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36300601

RESUMO

Novel biomaterials for bio- and chemical sensing applications have gained considerable traction in the diagnostic community with rising trends of using biocompatible and lowly cytotoxic material. Hydrogel-based electrochemical sensors have become a promising candidate for their swellable, nano-/microporous, and aqueous 3D structures capable of immobilizing catalytic enzymes, electroactive species, whole cells, and complex tissue models, while maintaining tunable mechanical properties in wearable and implantable applications. With advances in highly controllable fabrication and processability of these novel biomaterials, the possibility of bio-nanocomposite hydrogel-based electrochemical sensing presents a paradigm shift in the development of biocompatible, "smart," and sensitive health monitoring point-of-care devices. Here, recent advances in electrochemical hydrogels for the detection of biomarkers in vitro, in situ, and in vivo are briefly reviewed to demonstrate their applicability in ideal conditions, in complex cellular environments, and in live animal models, respectively, to provide a comprehensive assessment of whether these biomaterials are ready for point-of-care translation and biointegration. Sensors based on conductive and nonconductive polymers are presented, with highlights of nano-/microstructured electrodes that provide enhanced sensitivity and selectivity in biocompatible matrices. An outlook on current challenges that shall be addressed for the realization of truly continuous real-time sensing platforms is also presented.


Assuntos
Técnicas Biossensoriais , Dispositivos Eletrônicos Vestíveis , Animais , Hidrogéis/química , Polímeros , Materiais Biocompatíveis/química , Nanogéis
13.
Adv Sci (Weinh) ; 9(33): e2204246, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36253095

RESUMO

The last pandemic exposed critical gaps in monitoring and mitigating the spread of viral respiratory infections at the point-of-need. A cost-effective multiplexed fluidic device (NFluidEX), as a home-test kit analogous to a glucometer, that uses saliva and blood for parallel quantitative detection of viral infection and body's immune response in an automated manner within 11 min is proposed. The technology integrates a versatile biomimetic receptor based on molecularly imprinted polymers in a core-shell structure with nano gold electrodes, a multiplexed fluidic-impedimetric readout, built-in saliva collection/preparation, and smartphone-enabled data acquisition and interpretation. NFluidEX is validated with Influenza A H1N1 and SARS-CoV-2 (original strain and variants of concern), and achieves low detection limit in saliva and blood for the viral proteins and the anti-receptor binding domain (RBD) Immunoglobulin G (IgG) and Immunoglobulin M (IgM), respectively. It is demonstrated that nanoprotrusions of gold electrodes are essential for the fine templating of antibodies and spike proteins during molecular imprinting, and differentiation of IgG and IgM in whole blood. In the clinical setting, NFluidEX achieves 100% sensitivity and 100% specificity by testing 44 COVID-positive and 25 COVID-negative saliva and blood samples on par with the real-time quantitative polymerase chain reaction (p < 0.001, 95% confidence) and the enzyme-linked immunosorbent assay.


Assuntos
COVID-19 , Vírus da Influenza A Subtipo H1N1 , Humanos , SARS-CoV-2 , Saliva/química , Anticorpos Antivirais , Imunoglobulina G , Imunoglobulina M , Imunidade
14.
Nano Lett ; 22(16): 6647-6654, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-35943807

RESUMO

Wearable sweat monitoring represents an attractive opportunity for personalized healthcare and for evaluating sports performance. One of the limitations with such monitoring, however, is water layer formation upon cycling of ion-selective sensors, leading to degraded sensitivity and long-term instability. Our report is the first to use chemical vapor deposition-grown, three-dimensional, graphene-based, gradient porous electrodes to minimize such water layer formation. The proposed design reduces the ion diffusion path within the polymeric ion-selective membrane and enhances the electroactive surface for highly sensitive, real-time detection of Na+ ions in human sweat with high selectivity. We obtained a 7-fold enhancement in electroactive surface against 2D electrodes (e.g., carbon, gold), yielding a sensitivity of 65.1 ± 0.25 mV decade-1 (n = 3, RSD = 0.39%), the highest to date for wearable Na+ sweat sensors. The on-body sweat sensing performance is comparable to that of ICP-MS, suggesting its feasibility for health evaluation through sweat.


Assuntos
Técnicas Biossensoriais , Grafite , Dispositivos Eletrônicos Vestíveis , Técnicas Biossensoriais/métodos , Humanos , Íons , Porosidade , Sódio , Suor , Água
15.
Nanoscale ; 13(34): 14316-14329, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34477715

RESUMO

Non-invasive liquid biopsies offer hope for a rapid, risk-free, real-time glimpse into cancer diagnostics. Recently, hydrogen peroxide (H2O2) was identified as a cancer biomarker due to its continued release from cancer cells compared to normal cells. The precise monitoring and quantification of H2O2 are hindered by its low concentration and the limit of detection (LOD) in traditional sensing methods. Plasmon-assisted electrochemical sensors with their high sensitivity and low LOD make a suitable candidate for effective detection of H2O2, yet their electrical properties need to be improved. Here, we propose a new nanostructured microfluidic device for ultrasensitive, quantitative detection of H2O2 released from cancer cells in a portable fashion. The fluidic device features a series of self-organized gold nanocavities, enhanced with graphene nanosheets having optoelectrical properties, which facilitate the plasmon-assisted electrochemical detection of H2O2 released from human cells. Remarkably, the device can successfully measure the released H2O2 from breast cancer (MCF-7) and prostate cancer (PC3) cells in human plasma. Briefly, direct amperometric detection of H2O2 under simulated visible light illumination showed a superb LOD of 1 pM in a linear range of 1 pM-10 µM. We thoroughly studied the formation of self-organized plasmonic nanocavities on gold electrodes via surface and photo-electrochemical characterization techniques. In addition, the finite-difference time domain (FDTD) simulation of the electric field demonstrates the intensity of charge distribution at the nanocavity structure edges under visible light illumination. The superb LOD of the proposed electrode combining gold plasmonic nanocavities and graphene sheets paves the way for the development of non-invasive plasmon-assisted electrochemical sensors that can effectively detect low concentrations of H2O2 released from cancer cells.


Assuntos
Grafite , Neoplasias , Técnicas Eletroquímicas , Ouro , Humanos , Peróxido de Hidrogênio , Dispositivos Lab-On-A-Chip , Neoplasias/diagnóstico
16.
Nano Lett ; 21(12): 4895-4902, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34061534

RESUMO

Extracellular vesicles (EVs) are cell-derived membrane structures that circulate in body fluids and show considerable potential for noninvasive diagnosis. EVs possess surface chemistries and encapsulated molecular cargo that reflect the physiological state of cells from which they originate, including the presence of disease. In order to fully harness the diagnostic potential of EVs, there is a critical need for technologies that can profile large EV populations without sacrificing single EV level detail by averaging over multiple EVs. Here we use a nanofluidic device with tunable confinement to trap EVs in a free-energy landscape that modulates vesicle dynamics in a manner dependent on EV size and charge. As proof-of-principle, we perform size and charge profiling of a population of EVs extracted from human glioblastoma astrocytoma (U373) and normal human astrocytoma (NHA) cell lines.


Assuntos
Vesículas Extracelulares , Glioblastoma , Linhagem Celular , Humanos
17.
ACS Sens ; 6(3): 797-807, 2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33464874

RESUMO

Here, we report on an electrochemical biosensor based on core-shell structure of gold nano/micro-islands (NMIs) and electropolymerized imprinted ortho-phenylenediamine (o-PD) for detection of heart-fatty acid binding protein (H-FABP). The shape and distribution of NMIs (the core) were tuned by controlled electrodeposition of gold on a thin layer of electrochemically reduced graphene oxide (ERGO). NMIs feature a large active surface area to achieve a low detection limit (2.29 fg mL-1, a sensitivity of 1.34 × 1013 µA mM-1) and a wide linear range of detection (1 fg mL-1 to 100 ng mL-1) in PBS. Facile template H-FABP removal from the layer (the shell) in less than 1 min, high specificity against interference from myoglobin and troponin T, great stability at ambient temperature, and rapidity in detection of H-FABP (approximately 30 s) are other advantages of this biomimetic biosensor. The electrochemical measurements in human serum, human plasma, and bovine serum showed acceptable recovery (between 91.1 ± 1.7 and 112.9 ± 2.1%) in comparison with the ELISA method. Moreover, the performance of the biosensor in clinical serum showed lower detection time and limit of detection against lateral flow assay (LFA) rapid test kits, as a reference method. Ultimately, the proposed biosensor based on the core-shell structure of gold NMIs and MIP opens interesting avenues in the detection of proteins with low cost, high sensitivity and significantstability for clinical applications.


Assuntos
Técnicas Biossensoriais , Impressão Molecular , Animais , Bovinos , Ouro , Humanos , Ilhas , Polímeros Molecularmente Impressos
18.
Lab Chip ; 21(5): 855-866, 2021 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-33514986

RESUMO

Cancer cells shed into biofluids extracellular vesicles (EVs) - nanoscale membrane particles carrying diagnostic information. EVs shed by heterogeneous populations of tumor cells offer a unique opportunity to access biologically important aspects of disease complexity. Glioblastoma (GBM) exemplifies cancers that are incurable, because their temporal dynamics and molecular complexity evade standard diagnostic methods and confound therapeutic efforts. Liquid biopsy based on EVs offers unprecedented real-time access to complex tumour signatures, but it is not used clinically due to inefficient testing methods. We report on a nanostructured microfluidic-device that employs SERS for unambiguous identification of EVs from different GBM cell populations. The device features fabless plasmonic nanobowties for label-free and non-immunological SERS detection of EVs. This nanobowtiefluidic device combines the advanced characteristics of plasmonic nanobowties with a high throughput sample-delivery system for concentration of the analytes in the vicinity of the detection site. We showed theoretically and experimentally that the fluidic device assists the monolayer distribution of the EVs, which dramatically increase the probability of EV's existence in the laser illumination area. In addition, the optimized fabless nanobowtie structures with an average electric field enhancement factor of 9 × 105 achieve distinguishable and high intensity SERS signals. Using the nanobowtiefluidic and micro-Raman equipment, we were able to distinguish a library of peaks expressed in GBM EV subpopulations from two distinct glioblastoma cell lines (U373, U87) and compare them to those of non-cancerous glial EVs (NHA) and artificial homogenous vesicles (e.g. DOPC/Chol). This cost-effective and easy-to-fabricate SERS platform and a portable sample-delivery system for discerning the sub-population of GBM EVs and non-cancerous glial EVs may have broader applications to different types of cancer cells and their molecular/oncogenic signature.


Assuntos
Vesículas Extracelulares , Glioblastoma , Glioma , Glioblastoma/diagnóstico , Glioma/diagnóstico , Humanos , Biópsia Líquida , Análise Espectral Raman
19.
Biosens Bioelectron ; 176: 112905, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33358285

RESUMO

Electrochemical biosensors combine the selectivity of electrochemical signal transducers with the specificity of biomolecular recognition strategies. Although they have been broadly studied in different areas of diagnostics, they are not yet fully commercialized. During the COVID-19 pandemic, electrochemical platforms have shown the potential to address significant limitations of conventional diagnostic platforms, including accuracy, affordability, and portability. The advantages of electrochemical platforms make them a strong candidate for rapid point-of-care detection of SARS-CoV-2 infection by targeting not only viral RNA but antigens and antibodies. Herein, we reviewed advancements in electrochemical biosensing platforms towards the detection of SARS-CoV-2 through studying similar viruses.


Assuntos
Técnicas Biossensoriais/instrumentação , Teste para COVID-19/instrumentação , COVID-19/diagnóstico , Pandemias , SARS-CoV-2 , Anticorpos Antivirais/análise , Antígenos Virais/análise , Técnicas Biossensoriais/métodos , COVID-19/imunologia , COVID-19/virologia , Teste de Ácido Nucleico para COVID-19/instrumentação , Teste de Ácido Nucleico para COVID-19/métodos , Teste Sorológico para COVID-19/instrumentação , Teste Sorológico para COVID-19/métodos , Teste para COVID-19/métodos , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Humanos , Testes Imediatos , RNA Viral/análise , RNA Viral/genética , SARS-CoV-2/genética , SARS-CoV-2/imunologia , SARS-CoV-2/isolamento & purificação
20.
Sci Rep ; 10(1): 9527, 2020 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-32533102

RESUMO

We developed an inexpensive, portable platform for urea detection via electrochemistry by depositing silver nanoparticles (AgNPs) on a commercial glucose test strip. We modified this strip by first removing the enzymes from the surface, followed by electrodeposition of AgNPs on one channel (working electrode). The morphology of the modified test strip was characterized by Scanning Electron Microscopy (SEM), and its electrochemical performance was evaluated via Cyclic Voltammetry (CV) and Electrochemical Impedance Spectroscopy (EIS). We evaluated the performance of the device for urea detection via measurements of the dependency of peak currents vs the analyte concentration and from the relationship between the peak current and the square root of the scan rates. The observed linear range is 1-8 mM (corresponding to the physiological range of urea concentration in human blood), and the limit of detection (LOD) is 0.14 mM. The selectivity, reproducibility, reusability, and storage stability of the modified test strips are also reported. Additional tests were performed to validate the ability to measure urea in the presence of confounding factors such as spiked plasma and milk. The results demonstrate the potential of this simple and portable EC platform to be used in applications such as medical diagnosis and food safety.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...