Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(8)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38673195

RESUMO

In the present work, the development of geopolymeric materials with Na or K based on industrial kaolin samples, with variable kaolinite content and alkaline silicates, is studied. XRF, XRD, FTIR and SEM-EDS have been used as characterization techniques. Three ceramic kaolin samples, two from Algeria and one from Charente (France), have been considered. In particular, chemical and mineralogical characterization revealed elements distinct of Si and Al, and the content of pure kaolinite and secondary minerals. Metakaolinite was obtained by grinding and sieving raw kaolin at 80 µm and then by thermal activation at 750 °C for 1 h. This metakaolinite has been used as a base raw material to obtain geopolymers, using for this purpose different formulations of alkaline silicates with NaOH or KOH and variable Si/K molar ratios. The formation of geopolymeric materials by hydroxylation and polycondensation characterized with different Si/Al molar ratios, depending on the original metakaolinite content, has been demonstrated. Sodium carbonates have been detected by XRD and FTIR, and confirmed by SEM-EDS, in two of these geopolymer materials being products of NaOH carbonation.

2.
Materials (Basel) ; 16(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36770268

RESUMO

Calcium phosphate (CaP) with several chemical compositions and morphologies was prepared by precipitation using aqueous solutions of L-Glutamic acid (H2G) and calcium hydroxide, both mixed together with an aqueous solution (0.15 M) of phosphoric acid. Plate-shaped dicalcium phosphate dihydrate (brushite) particles were obtained and identified at a lower concentration of the solution of the reactants. The Ca/P ratio deduced by EDS was ~1, as expected. The nanoscale dimension of carbonate apatite and amorphous calcium phosphate, with variable Ca/P ratios, were revealed by X-ray diffraction (XRD) and scanning electron microscopy and energy dispersive X-ray spectroscopy analysis (SEM-EDS). They were characterized in medium and high concentrations of calcium hydroxide (0.15 M and 0.20 M). The equilibria involved in all the reactions in aqueous solution were determined. The thermodynamic calculations showed a decrease in the amount of chelate complexes with an increase in pH, being the opposite of [CaPO4-] and [CaHG+]. This fluctuation showed an evident influence on the morphology and polymorphism of CaP particles obtained under the present experimental conditions, with potential use as a biomaterial.

3.
Environ Sci Pollut Res Int ; 28(41): 57543-57556, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34091851

RESUMO

This research aims to investigate the effect of copper doping on the photocatalysis performance of TiO2 nanoparticles for disposal wastewater from organic pollutants. X-ray diffraction analysis manifests the crystallization of a rutile phase for pure and copper-doped TiO2 except for 2% resulting in a rutile-to-anatase phase transformation. The crystallite size is found less affected by Cu doping, i.e., ~30 nm. BET analysis indicates a decrease in the specific surface area as the doping loading increases. Scanning electron microscopy observations reveal spherical particles at the nanometer range for pure TiO2 and then larger agglomerates of ultrafine particles with Cu doping. FTIR analysis notifies the existence of hydroxyl groups, which will promote the photocatalysis process. The photodegradation of azucryl red (AR) has been investigated under different conditions; i.e., Cu-loading, initial concentration of AR, and pH. The kinetics of the photodegradation process is further found to comply with the Lagergren kinetic law, regardless the experimental conditions. Nevertheless, the photodegradation process is not only controlled by the intra-particle diffusion mechanism, but also by mass transfer through a liquid film boundary. The maximum degradation of AR, i.e., 86%, has been achieved at pH = 5.0 during 60 min of contact time for the 2% Cu doping, with effective regeneration. The Freundlich model exhibits a better fitting for AR dye photodegradation equilibrium data, compared to Langmuir, Temkin, and Dubinin-Radushkevich.


Assuntos
Cobre , Nanopartículas , Catálise , Fotólise , Titânio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...