Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Death Dis ; 13(7): 584, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35798698

RESUMO

Deficits in axonal transport are one of the earliest pathological outcomes in several models of amyotrophic lateral sclerosis (ALS), including SOD1G93A mice. Evidence suggests that rescuing these deficits prevents disease progression, stops denervation, and extends survival. Kinase inhibitors have been previously identified as transport enhancers, and are being investigated as potential therapies for ALS. For example, inhibitors of p38 mitogen-activated protein kinase and insulin growth factor receptor 1 have been shown to rescue axonal transport deficits in vivo in symptomatic SOD1G93A mice. In this work, we investigated the impact of RET, the tyrosine kinase receptor for glial cell line-derived neurotrophic factor (GDNF), as a modifier of axonal transport. We identified the fundamental interplay between RET signalling and axonal transport in both wild-type and SOD1G93A motor neurons in vitro. We demonstrated that blockade of RET signalling using pharmacological inhibitors and genetic knockdown enhances signalling endosome transport in wild-type motor neurons and uncovered a divergence in the response of primary motor neurons to GDNF compared with cell lines. Finally, we showed that inhibition of the GDNF-RET signalling axis rescues in vivo transport deficits in early symptomatic SOD1G93A mice, promoting RET as a potential therapeutic target in the treatment of ALS.


Assuntos
Esclerose Lateral Amiotrófica , Transporte Axonal , Fator Neurotrófico Derivado de Linhagem de Célula Glial , Proteínas Proto-Oncogênicas c-ret , Esclerose Lateral Amiotrófica/metabolismo , Animais , Transporte Axonal/fisiologia , Modelos Animais de Doenças , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Camundongos , Camundongos Transgênicos , Neurônios Motores/metabolismo , Proteínas Proto-Oncogênicas c-ret/metabolismo , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo
2.
ACS Chem Neurosci ; 13(13): 2060-2077, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35731924

RESUMO

The Wnt signaling suppressor Notum is a promising target for osteoporosis, Alzheimer's disease, and colorectal cancers. To develop novel Notum inhibitors, we used an X-ray crystallographic fragment screen with the Diamond-SGC Poised Library (DSPL) and identified 59 fragment hits from the analysis of 768 data sets. Fifty-eight of the hits were found bound at the enzyme catalytic pocket with potencies ranging from 0.5 to >1000 µM. Analysis of the fragments' diverse binding modes, enzymatic inhibitory activities, and chemical properties led to the selection of six hits for optimization, and five of these resulted in improved Notum inhibitory potencies. One hit, 1-phenyl-1,2,3-triazole 7, and its related cluster members, have shown promising lead-like properties. These became the focus of our fragment development activities, resulting in compound 7d with IC50 0.0067 µM. The large number of Notum fragment structures and their initial optimization provided an important basis for further Notum inhibitor development.


Assuntos
Cristalografia por Raios X
3.
J Med Chem ; 65(10): 7212-7230, 2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35536179

RESUMO

Notum is a carboxylesterase that suppresses Wnt signaling through deacylation of an essential palmitoleate group on Wnt proteins. There is a growing understanding of the role Notum plays in human diseases such as colorectal cancer and Alzheimer's disease, supporting the need to discover improved inhibitors, especially for use in models of neurodegeneration. Here, we have described the discovery and profile of 8l (ARUK3001185) as a potent, selective, and brain-penetrant inhibitor of Notum activity suitable for oral dosing in rodent models of disease. Crystallographic fragment screening of the Diamond-SGC Poised Library for binding to Notum, supported by a biochemical enzyme assay to rank inhibition activity, identified 6a and 6b as a pair of outstanding hits. Fragment development of 6 delivered 8l that restored Wnt signaling in the presence of Notum in a cell-based reporter assay. Assessment in pharmacology screens showed 8l to be selective against serine hydrolases, kinases, and drug targets.


Assuntos
Inibidores Enzimáticos , Esterases , Encéfalo/metabolismo , Cristalografia por Raios X , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Esterases/metabolismo , Via de Sinalização Wnt
4.
RSC Med Chem ; 12(8): 1281-1311, 2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34458736

RESUMO

Mitochondria are subcellular organelles that perform a variety of critical biological functions, including ATP production and acting as hubs of immune and apoptotic signalling. Mitochondrial dysfunction has been extensively linked to the pathology of multiple neurodegenerative disorders, resulting in significant investment from the drug discovery community. Despite extensive efforts, there remains no disease modifying therapies for neurodegenerative disorders. This manuscript aims to review the compounds historically used to modulate the mitochondrial network through the lens of modern medicinal chemistry, and to offer a perspective on the evidence that relevant exposure was achieved in a representative model and that exposure was likely to result in target binding and engagement of pharmacology. We hope this manuscript will aid the community in identifying those targets and mechanisms which have been convincingly (in)validated with high quality chemical matter, and those for which an opportunity exists to explore in greater depth.

5.
J Med Chem ; 63(21): 12942-12956, 2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-33124429

RESUMO

Carboxylesterase Notum is a negative regulator of the Wnt signaling pathway. There is an emerging understanding of the role Notum plays in disease, supporting the need to discover new small-molecule inhibitors. A crystallographic X-ray fragment screen was performed, which identified fragment hit 1,2,3-triazole 7 as an attractive starting point for a structure-based drug design hit-to-lead program. Optimization of 7 identified oxadiazol-2-one 23dd as a preferred example with properties consistent with drug-like chemical space. Screening 23dd in a cell-based TCF/LEF reporter gene assay restored the activation of Wnt signaling in the presence of Notum. Mouse pharmacokinetic studies with oral administration of 23dd demonstrated good plasma exposure and partial blood-brain barrier penetration. Significant progress was made in developing fragment hit 7 into lead 23dd (>600-fold increase in activity), making it suitable as a new chemical tool for exploring the role of Notum-mediated regulation of Wnt signaling.


Assuntos
Inibidores Enzimáticos/química , Esterases/antagonistas & inibidores , Oxidiazóis/química , Administração Oral , Animais , Sítios de Ligação , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Cristalografia por Raios X , Desenho de Fármacos , Inibidores Enzimáticos/farmacocinética , Inibidores Enzimáticos/farmacologia , Esterases/metabolismo , Meia-Vida , Humanos , Concentração Inibidora 50 , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microssomos Hepáticos/metabolismo , Simulação de Dinâmica Molecular , Oxidiazóis/farmacocinética , Oxidiazóis/farmacologia , Relação Estrutura-Atividade , Via de Sinalização Wnt/efeitos dos fármacos
6.
J Med Chem ; 63(17): 9464-9483, 2020 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-32787107

RESUMO

The Wnt family of proteins are secreted signaling proteins that play key roles in regulating cellular functions. Recently, carboxylesterase Notum was shown to act as a negative regulator of Wnt signaling by mediating the removal of an essential palmitoleate. Here we disclose two new chemical scaffolds that inhibit Notum enzymatic activity. Our approach was to create a fragment library of 250 acids for screening against Notum in a biochemical assay followed by structure determination by X-ray crystallography. Twenty fragments were identified as hits for Notum inhibition, and 14 of these fragments were shown to bind in the palmitoleate pocket of Notum. Optimization of 1-phenylpyrrole 20, guided by structure-based drug design, identified 20z as the most potent compound from this series. Similarly, the optimization of 1-phenylpyrrolidine 8 gave acid 26. This work demonstrates that inhibition of Notum activity can be achieved by small, drug-like molecules possessing favorable in vitro ADME profiles.


Assuntos
Hidrolases de Éster Carboxílico/antagonistas & inibidores , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Pirróis/química , Pirróis/farmacologia , Pirrolidinas/química , Pirrolidinas/farmacologia , Hidrolases de Éster Carboxílico/química , Avaliação Pré-Clínica de Medicamentos , Modelos Moleculares , Conformação Proteica
7.
Bioorg Med Chem Lett ; 30(3): 126751, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31862412

RESUMO

The carboxylesterase Notum is a key negative regulator of the Wnt signaling pathway by mediating the depalmitoleoylation of Wnt proteins. Our objective was to discover potent small molecule inhibitors of Notum suitable for exploring the regulation of Wnt signaling in the central nervous system. Scaffold-hopping from thienopyrimidine acids 1 and 2, supported by X-ray structure determination, identified 3-methylimidazolin-4-one amides 20-24 as potent inhibitors of Notum with activity across three orthogonal assay formats (biochemical, extra-cellular, occupancy). A preferred example 24 demonstrated good stability in mouse microsomes and plasma, and cell permeability in the MDCK-MDR1 assay albeit with modest P-gp mediated efflux. Pharmacokinetic studies with 24 were performed in vivo in mouse with single oral administration of 24 showing good plasma exposure and reasonable CNS penetration. We propose that 24 is a new chemical tool suitable for cellular studies to explore the fundamental biology of Notum.


Assuntos
Acetilesterase/antagonistas & inibidores , Amidas/química , Pirimidinas/química , Acetilesterase/metabolismo , Amidas/metabolismo , Amidas/farmacologia , Animais , Sítios de Ligação , Permeabilidade da Membrana Celular/efeitos dos fármacos , Cristalografia por Raios X , Cães , Meia-Vida , Concentração Inibidora 50 , Células Madin Darby de Rim Canino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microssomos/metabolismo , Simulação de Dinâmica Molecular , Estrutura Terciária de Proteína , Relação Estrutura-Atividade , Via de Sinalização Wnt/efeitos dos fármacos
8.
Beilstein J Org Chem ; 15: 2790-2797, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31807213

RESUMO

Background: The carboxylesterase Notum has been shown to act as a key negative regulator of the Wnt signalling pathway by mediating the depalmitoleoylation of Wnt proteins. LP-922056 (1) is an orally active inhibitor of Notum. We are investigating the role of Notum in modulating Wnt signalling in the central nervous system and wished to establish if 1 would serve as a peripherally restricted control. An accessible and improved synthetic route would allow 1 to become more readily available as a chemical tool to explore the fundamental biology of Notum and build target validation to underpin new drug discovery programs. Results: An improved, scalable synthesis of 1 is reported. Key modifications include: (1) the introduction of the C7-cyclopropyl group was most effectively achieved with a Suzuki-Miyaura cross-coupling reaction with MIDA-boronate 11 (5 → 6), and (2) C6 chlorination was performed with 1-chloro-1,2-benziodoxol-3-one (12) (6 → 7) as a mild and selective electrophilic chlorination agent. This 7-step route from 16 has been reliably performed on large scale to produce multigram quantities of 1 in good efficiency and high purity. Pharmacokinetic studies in mouse showed CNS penetration of 1 is very low with a brain/plasma concentration ratio of just 0.01. A small library of amides 17 were prepared from acid 1 to explore if 1 could be modified to deliver a CNS penetrant tool by capping off the acid as an amide. Although significant Notum inhibition activity could be achieved, none of these amides demonstrated the required combination of metabolic stability along with cell permeability without evidence of P-gp mediated efflux. Conclusion: Mouse pharmacokinetic studies demonstrate that 1 is unsuitable for use in models of disease where brain penetration is an essential requirement of the compound but would be an ideal peripherally restricted control. These data will contribute to the understanding of drug levels of 1 to overlay with appropriate in vivo efficacy endpoints, i.e., the PK-PD relationship. The identification of a suitable analogue of 1 (or 17) which combines Notum inhibition with CNS penetration would be a valuable chemical probe for investigating the role of Notum in disease models.

9.
Angew Chem Int Ed Engl ; 54(37): 10944-8, 2015 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-26223389

RESUMO

A practical ruthenium-catalyzed O- to S-alkyl migration affords structurally diverse thiooxazolidinones in excellent yields. Our studies suggest this catalytic transformation proceeds through a pseudoreversible radical pathway drawing mechanistic parallels to the classic Barton-McCombie reaction.


Assuntos
Rutênio/química , Catálise
10.
Org Lett ; 16(19): 5020-3, 2014 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-25226380

RESUMO

An efficient sequential intramolecular cyclization of amino alcohol carbamates followed by Cu-catalyzed cross-coupling with aryl iodides under mild conditions has been developed. The reaction occurred in good yields and tolerated aryl iodides containing functionalities such as nitriles, ketones, ethers, and halogens. Heteroaryl iodides and substituted amino alcohol carbamates were also well tolerated.


Assuntos
Amino Álcoois/química , Carbamatos/química , Cobre/química , Hidrocarbonetos Iodados/química , Oxazolidinonas/síntese química , Catálise , Ciclização , Estrutura Molecular , Oxazolidinonas/química
11.
Chemistry ; 19(8): 2895-902, 2013 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-23315785

RESUMO

Practical syntheses of 2-keto-3-deoxy-D-xylonate (D-KDX) and 2-keto-3-deoxy-L-arabinonate (L-KDA) that rely on reaction of the anion of ethyl 2-[(tert-butyldimethylsilyl)oxy]-2-(dimethoxy phosphoryl) acetate with enantiopure glyceraldehyde acetonide, followed by global deprotection of the resultant O-silyl-enol esters, have been developed. This has enabled us to confirm that a 2-keto-3-deoxy-D-gluconate aldolase from the archaeon Sulfolobus solfataricus demonstrates good activity for catalysis of the retro-aldol cleavage of both these enantiomers to afford pyruvate and glycolaldehyde. The stereochemical promiscuity of this aldolase towards these enantiomeric aldol substrates confirms that this organism employs a metabolically promiscuous pathway to catabolise the C5-sugars D-xylose and L-arabinose.


Assuntos
Aldeído Liases/química , Aldeído Liases/metabolismo , Arabinose/química , Arabinose/metabolismo , Carboidratos/química , Gluconatos/química , Açúcares Ácidos/síntese química , Sulfolobus solfataricus/química , Sulfolobus solfataricus/metabolismo , Xilose/química , Xilose/metabolismo , Sequência de Aminoácidos , Catálise , Cristalografia por Raios X , Modelos Moleculares , Açúcares Ácidos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...