Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 15(8): 3919-3930, 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36723258

RESUMO

In catalyzed electrochemical reactions, a general strategy is to modify electrode materials to increase the efficiency of the reaction. From the viewpoint of environmental protection, electrochemical reactions should be performed in an inert green water phase. In this study, we report active pure liquid water (named PV), which was collected from the condensed vapor of heated gold (Au)-containing plasmon-activated water (PAW) with a distinct structure of electron-doping and reduced hydrogen bonding (HB). The resulting PV also exhibited distinct properties of the formation of stronger intermolecular HB with alcohols, and notable activities in catalytic electrochemical reactions, compared to bulk deionized water (DIW). Moreover, the measured diffusion coefficients of water increased by ca. 30% in PV solutions. Two typical electrochemical reactions significantly increased peak currents observed in oxidation-reduction cycles (ORCs) with roughening of the Au substrate and in a model of reversible oxidation-reduction reactions on a platinum (Pt) substrate. Also, PV enhanced hydrogen evolution reactions (HERs) on catalytic Pt and inert stainless steel substrates in PV-based solutions at different pH values, compared to DIW. Moreover, these activities of PV were more marked, even better than those of PAW, when PV was collected under a higher heating rate used to heat PAW. Active pure PV has emerged as a promising green solvent applicable to various chemical reactions with more efficiency.

2.
Molecules ; 27(21)2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36364487

RESUMO

Visceral pain (VP) is the organ-derived nociception in which increased inflammatory reaction and exaggerated activation of the central nucleus of the amygdala (CeA) may contribute to this deficiency. Considering the amygdala also serves as the integration center for olfaction, the present study aimed to determine whether olfactory stimulation (OS) would effectively depress over-activation and inflammatory reaction in CeA, and successfully relieve VP-induced abnormalities. Adult rats subjected to intraperitoneal injection of acetic acid inhaled lavender essential oil for 2 or 4 h. The potential benefits of OS were determined by measuring the pro-inflammatory cytokine level, intracellular potassium and the upstream small-conductance calcium-activated potassium (SK) channel expression, together with detecting the stress transmitters that participated in the modulation of CeA activity. Results indicated that in VP rats, strong potassium intensity, reduced SK channel protein level, and increased corticotropin-releasing factor, c-fos, and substance P immuno-reactivities were detected in CeA. Enhanced CeA activation corresponded well with increased inflammatory reaction and decreased locomotion, respectively. However, in rats subjected to VP and received OS, all above parameters were significantly returned to normal levels with higher change detected in treating OS of 4h. As OS successfully depresses inflammation and CeA over-activation, application of OS may serve as an alternative and effective strategy to efficiently relieve VP-induced deficiency.


Assuntos
Dor Visceral , Ratos , Animais , Dor Visceral/tratamento farmacológico , Olfato , Hormônio Liberador da Corticotropina , Potássio , Fenótipo
3.
Histochem Cell Biol ; 155(3): 355-367, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33170350

RESUMO

Syndecan-3 (SDC3) and Syndecan-4 (SDC4) are distributed throughout the nervous system (NS) and are favourable factors in motor neuron development. They are also essential for regulation of neurite outgrowth in the CNS. However, their roles in the reconstruction of the nodes of Ranvier after peripheral nerve injury (PNI) are still unclear. Present study used an in vivo model of end-to-side neurorrhaphy (ESN) for 1-3 months. The recovery of neuromuscular function was evaluated by grooming test. Expression and co-localization of SDC3, SDC4, and Nav1.6 channel (Nav1.6) at regenerating axons were detected by proximity ligation assay and confocal microscopy after ESN. Time-of-flight secondary ion mass spectrometry was used for imaging ions distribution on tissue. Our data showed that the re-clustering of sodium and Nav1.6 at nodal regions of the regenerating nerve corresponded to the distribution of SDC3 after ESN. Furthermore, the re-establishment of sodium and Nav1.6 correlated with the recovery of muscle power 3 months after ESN. This study suggested syndecans may involve in stabilizing Nav1.6 and further modulate the distribution of sodium at nodal regions after remyelination. The efficiency of sodium re-clustering was improved by the assistance of anionic syndecan, resulting in a better functional repair of PNI.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.6/metabolismo , Procedimentos Neurocirúrgicos , Nós Neurofibrosos/metabolismo , Sódio/metabolismo , Sindecana-3/metabolismo , Animais , Masculino , Canal de Sódio Disparado por Voltagem NAV1.6/análise , Canal de Sódio Disparado por Voltagem NAV1.6/genética , Regeneração Nervosa , Ratos , Ratos Wistar , Sódio/análise , Sindecana-3/análise , Sindecana-3/genética
4.
Sci Rep ; 10(1): 20868, 2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-33257784

RESUMO

Nowadays, solar energy is the most environmentally friendly energy source to drive many chemical reactions and physical processes. However, the corresponding fabrication procedures for obtaining excellent energy-storage devices are relatively complicated and expensive. In this work, we report an innovative strategy on plasmon-activated water (PAW) serving as energy-storage medium from solar energy. The lifetime of the created energetic PAW solution from hot electron transfer (HET) on Au nanoparticles (AuNPs) illuminated with sunshine can last for 2 days, making the energy-storage system is practically available. Encouragingly, the energy-conversion efficiency from the solar energy in the PAW solution is ca. 6.7%. Compared to conventional deionized (DI) water solution, the prepared metastable PAW solution exhibited distinctly higher chemical potential at room temperature. It demonstrates abilities in faster evaporation and enhancing chemical reactions, including hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Our proposed strategy on the simple and cheap energy-storage system based on prepared PAW utilizing solar energy is the first time shown in the literature.

5.
RSC Adv ; 10(69): 42116-42119, 2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-35516753

RESUMO

Based on their morphologies or states, Au-based materials will be operative under a specific aqueous or organic phase. Reduction of Au3+ by amphiphilic sodium dodecylbenzenesulfonate is proposed to improve the phase challenge via an amphiphilic nature. Moreover, the green approach is expected to be suitable to prepare myriad Au-based materials which can be applied with a limited phase problem.

6.
ACS Omega ; 3(5): 4743-4751, 2018 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-31458693

RESUMO

Conventionally, reactions in aqueous solutions are prepared using deionized (DI) water, the properties of which are related to inert "bulk water" comprising a tetrahedral hydrogen-bonded network. In this work, we demonstrate the distinguished benefits of using in situ plasmon-activated water (PAW) with reduced hydrogen bonds instead of DI water in electrochemical reactions, which generally are governed by diffusion and kinetic controls. Compared with DI water-based systems, the diffusion coefficient and the electron-transfer rate constant of K3Fe(CN)6 in PAW in situ can be increased by ca. 35 and 15%, respectively. These advantages are responsible for the improved performance of surface-enhanced Raman scattering (SERS). On the basis of PAW in situ, the SERS enhancement of twofold higher intensity of rhodamine 6G and the corresponding low relative standard deviation of 5%, which is comparable to and even better than those based on complicated processes shown in the literature, are encouraging.

7.
RSC Adv ; 8(18): 9618-9626, 2018 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-35540828

RESUMO

The role of the hepato-protective agent plasmon-activated water (PAW) as an innovative anti-oxidant during chronic sleep deprivation (SD) is realized in this study. PAW possesses reduced hydrogen-bonded structure, higher chemical potential and significant anti-oxidative properties. In vitro tests using rat liver cell line (Clone-9) have demonstrated that PAW is non-cytotoxic and does not change the cellular migration capacity. The in vivo experiment on SD rats suffering from intense oxidative damage to the liver, an extremely common phenomenon in the present-time with deleterious effects on metabolic function, is performed by feeding PAW to replace deionized (DI) water. Experimental results indicate that PAW markedly reduces oxidative stress with enhanced bioenergetics in hepatocytes. PAW also effectively restores hepatocytic trans-membrane ion homeostasis, preserves membranous structures, and successfully improves liver function and metabolic activity. In addition, the hepato-protective effects of PAW are evidently demonstrated by the reduced values of glutamic oxaloacetic transaminase (GOT) and glutamic pyruvic transaminase (GPT) and the recovery of total protein and albumin levels. With clear evidences of PAW for protecting liver from SD-induced injury, delivering PAW as a powerful hepato-protective agent should be worthy of trailblazing new clinical trials in a healthier, more natural, and more convenient way.

8.
J Sci Food Agric ; 98(2): 751-757, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28675436

RESUMO

BACKGROUND: The flavor and quality of tea are widely believed to be associated with the pot in which the tea is made. However, this claim is mostly by experiences and lacks solid support from scientific evidence. The current study investigated and compared the chemical compositions of oolong tea made with six different teapot materials, namely Zisha, Zhuni, stainless steel, ceramic, glass and plastic. RESULTS: For each tea sample, polyphenols and caffeine were examined by HPLC-UV, volatile compounds by GC/MS, amino acids by LC/MS and minerals by ICP-MS. The results suggested that tea infusions from Zisha and Zhuni pots contain higher levels of EGC, EGCG and total catechins and less caffeine than those from ceramic, glass and plastic pots and tend to have the lowest total mineral contents, potassium and volatile compounds in tea soup. The statistical differences were not all significant among Zisha, Zhuni and stainless steel pots. CONCLUSION: Based on the overall chemical composition of the tea infusion, Yixing clay pots (Zisha and Zhuni) produce tea infusions that are presumably less bitter and more fragrant and tend to contain more healthful compounds than tea infusions from other pots. The results could partially explain why Yixing clay pots are among the most popular teapots. The beneficial effects of long-term repeated use of these teapots warrants further study. © 2017 Society of Chemical Industry.


Assuntos
Silicatos de Alumínio/química , Cerâmica/química , Vidro/química , Plásticos/química , Aço Inoxidável/química , Chá/química , Argila , Folhas de Planta/química
9.
Sci Rep ; 7(1): 9531, 2017 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-28842691

RESUMO

Due to the difficulty of healing chronic wound, in the process of changing dressing, secondary damage on the tissue caused by adhesion should be prevented. In this study, the new dressing of particle hydrogels synthesized with poly-methyl methacrylate and poly-vinyl alcohol precursors were proposed. In addition, cell safety tests, animal's allergic stimulation, and animal's wound healing experiments were conducted for particle hydrogels. On one hand, in L929 cell experiment, the results of particle hydrogels extract 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide tests and lactate dehydrogenase test trial show that there are no safety concerns over particle hydrogels. On the other hand, New Zealand white rabbits were chosen for skin sensitization tests in animal trials, which show the consistent results. At last, wound healing tests used diabetes induction with 10-week-old rats and three-month-old Landrace pigs, with the tissue histology. In short, through this experiment, it is found that in the early phase of the diabetic rats and pigs' wound healing, using particle hydrogels can enhance collagen formation, and achieve the goal of faster wound healing.


Assuntos
Bandagens , Polímeros/química , Polimetil Metacrilato/química , Álcool de Polivinil/química , Animais , Linhagem Celular , Sobrevivência Celular , Colágeno , Diabetes Mellitus Experimental , Hidrogéis/química , Camundongos , Nanofios , Polímeros/uso terapêutico , Coelhos , Ratos , Prata/química , Pele/imunologia , Pele/patologia , Suínos , Cicatrização
10.
J Pineal Res ; 63(2)2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28480587

RESUMO

Prolonged exposure to gamma-hydroxybutyric acid (GHB) would cause drug intoxication in which impaired cognitive function results from enhanced hippocampal oxidative stress may serve as a major symptom in this deficiency. Considering melatonin possesses significant anti-oxidative efficacy, this study aimed to determine whether melatonin would successfully promote the nuclear factor erythroid 2-related factor 2 and antioxidant responsive element (Nrf2-ARE) signaling, depress oxidative stress, and rescue hippocampal bioenergetics and cognitive function following drug intoxication injury. Adolescent rats subjected to 10 days of GHB were received melatonin at doses of either 10 or 100 mg/kg. Time-of-flight secondary ion mass spectrometry, biochemical assay, quantitative histochemistry, [14 C]-2-deoxyglucose analysis, together with Morris water maze were employed to detect the molecular signaling, oxidative status, bioenergetic level, as well as the cognitive performances, respectively. Results indicated that in GHB-intoxicated rats, enhanced oxidative stress, increased cholesterol level, and decreased anti-oxidative enzymes activities were detected in hippocampal regions. Intense oxidative stress paralleled well with reduced bioenergetics and poor performance in behavioral testing. However, in rats treated with melatonin following GHB intoxication, all above parameters and cognitive function were gradually returned to nearly normal levels. Melatonin also remarkably promoted the translocation of Nrf2 from cytoplasm to nucleus in a dose-dependent manner, thereby increased the Nrf2-ARE signaling-related downstream anti-oxidative enzymes activities. As melatonin effectively rescues hippocampal bioenergetics through depressing the oxidative stress by promoting Nrf2-ARE molecular machinery, this study thus highlights for the first time that clinical use of melatonin may serve as a therapeutic strategy to improve the cognitive function in unsuspecting victims suffered from GHB intoxication injury.


Assuntos
Elementos de Resposta Antioxidante , Cognição/efeitos dos fármacos , Hipocampo , Melatonina/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Oxibato de Sódio/efeitos adversos , Animais , Comportamento Animal/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/patologia , Hipocampo/fisiopatologia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar , Oxibato de Sódio/farmacologia
11.
Histochem Cell Biol ; 146(5): 599-608, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27468821

RESUMO

The P/Q-type voltage-dependent calcium channel (Cav2.1) in the presynaptic membranes of motor nerve terminals plays an important role in regulating Ca2+ transport, resulting in transmitter release within the nervous system. The recovery of Ca2+-dependent signal transduction on motor end plates (MEPs) and innervated muscle may directly reflect nerve regeneration following peripheral nerve injury. Although the functional significance of calcium channels and the levels of Ca2+ signalling in nerve regeneration are well documented, little is known about calcium channel expression and its relation with the dynamic Ca2+ ion distribution at regenerating MEPs. In the present study, end-to-side neurorrhaphy (ESN) was performed as an in vivo model of peripheral nerve injury. The distribution of Ca2+ at regenerating MEPs following ESN was first detected by time-of-flight secondary ion mass spectrometry, and the specific localization and expression of Cav2.1 channels were examined by confocal microscopy and western blotting. Compared with other fundamental ions, such as Na+ and K+, dramatic changes in the Ca2+ distribution were detected along with the progression of MEP regeneration. The re-establishment of Ca2+ distribution and intensity were correlated with the functional recovery of muscle in ESN rats. Furthermore, the re-clustering of Cav2.1 channels after ESN at the nerve terminals corresponded with changes in the Ca2+ distribution. These results indicated that renewal of the Cav2.1 distribution within the presynaptic nerve terminals may be necessary for initiating a proper Ca2+ influx and shortening the latency of muscle contraction during nerve regeneration.


Assuntos
Canais de Cálcio Tipo N/análise , Canais de Cálcio Tipo N/metabolismo , Cálcio/análise , Cálcio/metabolismo , Terminações Nervosas/metabolismo , Terminações Nervosas/patologia , Espectrometria de Massa de Íon Secundário , Animais , Cátions Bivalentes/análise , Cátions Bivalentes/metabolismo , Modelos Animais de Doenças , Masculino , Ratos , Ratos Wistar
12.
Sci Rep ; 6: 28456, 2016 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-27328821

RESUMO

Theoretical calculations indicate that the properties of confined liquid water, or liquid water at surfaces, are dramatically different from those of liquid bulk water. Here we present an experimentally innovative strategy on comprehensively efficient oxygen evolution reaction (OER) utilizing plasmon-induced activated water, creating from hot electron decay at resonantly illuminated Au nanoparticles (NPs). Compared to conventional deionized (DI) water, the created water owns intrinsically reduced hydrogen-bonded structure and a higher chemical potential. The created water takes an advantage in OER because the corresponding activation energy can be effectively reduced by itself. Compared to DI water-based solutions, the OER efficiencies at Pt electrodes increased by 69.3%, 21.1% and 14.5% in created water-based acidic, neutral and alkaline electrolyte solutions, respectively. The created water was also effective for OERs in photoelectrochemically catalytic and in inert systems. In addition, the efficiency of OER increased by 47.5% in created water-based alkaline electrolyte solution prepared in situ on a roughened Au electrode. These results suggest that the created water has emerged as an innovative activator in comprehensively effective OERs.

13.
Sci Rep ; 6: 22166, 2016 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-26916099

RESUMO

The strength of hydrogen bond (HB) decides water's property and activity. Here we propose the mechanisms on creation and persistence of innovatively prepared liquid water, which is treated by Au nanoparticles (AuNPs) under resonant illumination of green-light emitting diode (LED) to create Au NP-treated (sAuNT) water, with weak HB at room temperature. Hot electron transfer on resonantly illuminated AuNPs, which is confirmed from Au LIII-edge X-ray absorption near edge structure (XANES) spectra, is responsible for the creation of negatively charged sAuNT water with the incorporated energy-reduced hot electron. This unique electronic feature makes it stable at least for one week. Compared to deionized (DI) water, the resulting sAuNT water exhibits many distinct properties at room temperature. Examples are its higher activity revealed from its higher vapor pressure and lower specific heat. Furthermore, Mpemba effect can be successfully explained by our purposed hypothesis based on sAuNT water-derived idea of water energy and HB.

14.
Sci Rep ; 5: 18420, 2015 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-26674573

RESUMO

Excessive exposure to club drug (GHB) would cause cognitive dysfunction in which impaired hippocampal Ca(2+)-mediated neuroplasticity may correlate with this deficiency. However, the potential changes of in vivo Ca(2+) together with molecular machinery engaged in GHB-induced cognitive dysfunction has never been reported. This study aims to determine these changes in bio-energetic level through ionic imaging, spectrometric, biochemical, morphological, as well as behavioral approaches. Adolescent rats subjected to GHB were processed for TOF-SIMS, immunohistochemistry, biochemical assay, together with Morris water maze to detect the ionic, molecular, neurochemical, and behavioral changes of GHB-induced cognitive dysfunction, respectively. Extent of oxidative stress and bio-energetics were assessed by levels of lipid peroxidation, Na(+)/K(+) ATPase, cytochrome oxidase, and [(14)C]-2-deoxyglucose activity. Results indicated that in GHB intoxicated rats, decreased Ca(2+) imaging and reduced NMDAR1, nNOS, and p-CREB reactivities were detected in hippocampus. Depressed Ca(2+)-mediated signaling corresponded well with intense oxidative stress, diminished Na(+)/K(+) ATPase, reduced COX, and decreased 2-DG activity, which all contributes to the development of cognitive deficiency. As impaired Ca(2+)-mediated signaling and oxidative stress significantly contribute to GHB-induced cognitive dysfunction, delivering agent(s) that improves hippocampal bio-energetics may thus serve as a promising strategy to counteract the club drug-induced cognitive dysfunction emerging in our society nowadays.


Assuntos
Transtornos Cognitivos/metabolismo , Diagnóstico por Imagem/métodos , Metabolismo Energético , Íons/análise , Espectrometria de Massa de Íon Secundário/métodos , Animais , Cálcio/metabolismo , Transtornos Cognitivos/induzido quimicamente , Transtornos Cognitivos/fisiopatologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Drogas Ilícitas , Immunoblotting , Imuno-Histoquímica , Peroxidação de Lipídeos , Masculino , Aprendizagem em Labirinto/fisiologia , Óxido Nítrico Sintase Tipo I/metabolismo , Ratos Wistar , Receptores de N-Metil-D-Aspartato/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo
15.
Technol Health Care ; 24 Suppl 1: S147-53, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26684563

RESUMO

Jelly fig (Ficus awkeotsang) achenes have been utilized to prepare a traditional drink in Taiwan. Herein, we evaluated the effect of water extract from jelly fig seed residues (WERJFA) on cancer cells. WERJFA could inhibit the growth of human colorectal cancer cells, COLO205 and HT29 in both dose- and time-dependent manners. The flow cytometric analysis with propidium iodide (PI) showed that WERJFA primarily arrested COLO205 and HT29 cells at the G2/M phase of cell cycle as the concentration reached to at least 0.5 mg/ml. WERJFA induced apoptosis of these two cell lines, as evidenced by annexin V-FITC/PI and 4', 6-diamidino-2-phenylindole (DAPI) staining using flow cytometry and confocal microscopy, respectively. Reactive oxygen species (ROS) production and the loss of mitochondrial membrane potential in WERJFA-treated cells were detected by flow cytometry with H2DCF-DA and 5,5', 6,6'-Tetrachloro-1, 1', 3,3'-tetraethylbenzimidazolocarbocyanine iodide (JC-1). Our results showed that WERJFA exerted anti-proliferative and apoptotic effects on colorectal cancer cells. WERJFA arrested cell cycle, and caused apoptotic death in these cancer cells possibly via mitochondrial pathway involved with exceeding ROS level.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Ficus/química , Extratos Vegetais/uso terapêutico , Sementes/química , Humanos , Fitoterapia , Taiwan
16.
Sci Rep ; 5: 16263, 2015 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26541371

RESUMO

Splitting water for hydrogen production using light, or electrical energy, is the most developed 'green technique'. For increasing efficiency in hydrogen production, currently, the most exciting and thriving strategies are focused on efficient and inexpensive catalysts. Here, we report an innovative idea for efficient hydrogen evolution reaction (HER) utilizing plasmon-activated liquid water with reduced hydrogen-bonded structure by hot electron transfer. This strategy is effective for all HERs in acidic, basic and neutral systems, photocatalytic system with a g-C3N4 (graphite carbon nitride) electrode, as well as in an inert system with an ITO (indium tin oxide) electrode. Compared to deionized water, the efficiency of HER increases by 48% based on activated water ex situ on a Pt electrode. Increase in energy efficiency from activated water is 18% at a specific current yield of -20 mA in situ on a nanoscale-granulated Au electrode. Moreover, the onset potential of -0.023 V vs RHE was very close to the thermodynamic potential of the HER (0 V). The measured current density at the corresponding overpotential for HER in an acidic system was higher than any data previously reported in the literature. This approach establishes a new vista in clean green energy production.

17.
Technol Health Care ; 2015 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-26409550

RESUMO

Jelly fig (Ficus awkeotsang) achenes have been utilized to prepare a traditional drink in Taiwan. Herein, we evaluated the effect of water extract from jelly fig seed residues (WERJFA) on cancer cells. WERJFA could inhibit the growth of human colorectal cancer cells, COLO205 and HT29 in both dose- and time-dependent manners. The flow cytometric analysis with propidium iodide (PI) showed that WERJFA primarily arrested COLO205 and HT29 cells at the G2/M phase of cell cycle as the concentration reached to at least 0.5 mg/ml. WERJFA induced apoptosis of these two cell lines, as evidenced by annexin V-FITC/PI and 4', 6-diamidino-2-phenylindole (DAPI) staining using flow cytometry and confocal microscopy, respectively. Reactive oxygen species (ROS) production and the loss of mitochondrial membrane potential in WERJFA-treated cells were detected by flow cytometry with H2DCF-DA and 5,5', 6,6'-Tetrachloro-1, 1', 3,3'-tetraethylbenzimidazolocarbocyanine iodide (JC-1). Our results showed that WERJFA exerted anti-proliferative and apoptotic effects on colorectal cancer cells. WERJFA arrested cell cycle, and caused apoptotic death in these cancer cells possibly via mitochondrial pathway involved with exceeding ROS level.

18.
J Mater Chem B ; 3(4): 651-664, 2015 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-32262348

RESUMO

Here, we report the development of a multifunctional nanocarrier consisting of paramagnetic graphene quantum dots (GQDs), folate, and doxorubicin (Dox), used as delivery vehicles, a targeting ligand, and a chemotherapeutic drug, respectively. The paramagnetic GQDs, named folate-GdGQDs, were successfully prepared by covalently conjugating diethylenetriaminepentaacetic acid gadolinium and folic acid onto the surface of GQDs. The resultant folate-GdGQDs, which showed a longitudinal relaxivity r1 of 11.49 mM-1 s-1, greatly enhanced the brightness of the T1-weighted magnetic resonance (MR) images, indicating their potential for use as positive contrast agents for MR imaging (MRI). The feasibility of utilizing the folate-GdGQDs with strong luminescence emissions for targeted imaging of HeLa cells was also evaluated. An in vitro cell (HeLa and HepG2 cells) viability assay and in vivo evaluation of toxicity to the embryonic development of zebrafish showed that these folate-GdGQDs exhibited negligible cytotoxicity and excellent biocompatibility within the given range of concentrations. More importantly, strong therapeutic activity was achieved by loading Dox onto the surfaces of folate-GdGQDs through π-π stacking and hydrophobic interactions, leading to the formation of folate-GdGQD/Dox multifunctional nanocarriers. Approximately 80% of the loaded Dox was released from the folate-GdGQD/Dox nanocarriers under mild acidic conditions (pH 5.0), whereas only 20% of Dox was released at pH 7.0 after 48 h. Furthermore, these multifunctional nanocarriers could efficiently induce an inhibitory effect on HeLa cells, as confirmed by an in vitro cytotoxicity assay. The combined flow cytometry analysis and confocal laser scanning microscopic observation showed that these nanocarriers were efficiently taken up by the cancer cells overexpressing folate receptors. Taken together, these results suggested that the multifunctional nanocarriers could be used as promising targeted drug delivery vehicles for the diagnosis and image-guided chemotherapy of various cancers.

19.
Anal Chem ; 87(1): 808-15, 2015 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-25471522

RESUMO

Interesting properties of water with distinguishable hydrogen-bonding structure on interfacial phase or in confined environment have drawn wide attentions. However, these unique properties of water are only found within the interfacial phase and confined environment, thus, their applications are limited. In addition, quantitative evaluation on these unique properties associating with the enhancement of water's physical and chemical activities represents a notable challenge. Here we report a practicable production of free-standing liquid water at room temperature with weak hydrogen-bonded structure naming Au nanoparticles (NPs)-treated (AuNT) water via treating by plasmon-induced hot electron transfer occurred on resonantly illuminated gold NPs (AuNPs). Compared to well-known untreated bulk water (deionized water), the prepared AuNT water exhibits many distinct activities in generally physical and chemical reactions, such as high solubilities to NaCl and O2. Also, reducing interaction energy within water molecules provides lower overpotential and higher efficiency in electrolytic hydrogen production. In addition, these enhanced catalytic activities of AuNT water are tunable by mixing with deionized water. Also, most of these tunable activities are linearly proportional to its degree of nonhydrogen-bonded structure (DNHBS), which is derived from the O-H stretching in deconvoluted Raman spectrum.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Análise Espectral Raman/métodos , Água/química , Cerâmica , Técnicas Eletroquímicas , Ligação de Hidrogênio , Oxigênio/metabolismo , Cloreto de Sódio/metabolismo , Espectrofotometria Infravermelho , Espectroscopia de Infravermelho com Transformada de Fourier
20.
Brain Struct Funct ; 220(2): 663-76, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24515890

RESUMO

Early-life sleep deprivation (ESD) is a serious condition with severe metabolic sequelae. The pineal hormone melatonin plays an important role in homeostatic regulation of metabolic function. Considering norepinephrine-mediated Ca(2+) influx and subsequent protein kinase A (PKA) activation is responsible for downstream cAMP-response element-binding protein (CREB) phosphorylation and melatonin biosynthesis, the present study determined whether Ca(2+) expression, together with the molecular machinery participated in melatonin production would significantly alter after ESD. Weaning rats subjected to chronic ESD and maintained naturally (light:dark cycle = 12:12) to adulthood were processed for time-of-flight secondary ion mass spectrometry, immunoblotting, immunohistochemistry together with spectrometric assay to detect the Ca(2+) signaling, adrenoreceptors, PKA, phosphorylated CREB (pCREB) as well as the serum level of melatonin, respectively. Pineal bio-energetics and metabolic function were determined by measuring the cytochrome oxidase activity and serum level of glucose, triglyceride, insulin, high- and low-density lipoproteins, respectively. Results indicated that in normal rats, strong Ca(2+) signaling along with intense adrenoreceptors, PKA, and pCREB activities were all detected in pinealocytes. Enhanced Ca(2+) imaging and signaling pathway corresponded well with intact bio-energetics, normal melatonin production and metabolic activity. However, following ESD, not only Ca(2+) but also pineal signaling activities were all significantly decreased. Blood analysis showed reduced melatonin level and impaired metabolic function after ESD. As depressed Ca(2+)-mediated signaling pathway and melatonin biosynthesis are positively correlated with the development of metabolic dysfunction, supplementary use of melatonin in childhood may thus serve as a practical way to prevent or counteract the ESD-induced metabolic deficiency.


Assuntos
Melatonina/metabolismo , Doenças Metabólicas/etiologia , Glândula Pineal/metabolismo , Privação do Sono/metabolismo , Fatores Etários , Animais , Sinalização do Cálcio , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Masculino , Melatonina/sangue , Fosforilação , Ratos , Ratos Wistar , Receptores Adrenérgicos/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...