Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Microbiol ; 59(1): 101-109, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33355889

RESUMO

Hepatitis C virus (HCV) life cycle is highly dependent on cellular proteins for viral propagation. In order to identify the cellular factors involved in HCV propagation, we previously performed a protein microarray assay using the HCV nonstructural 5A (NS5A) protein as a probe. Of ∼9,000 human cellular proteins immobilized in a microarray, adenosylhomocysteinase like 1 (AHCYL1) was among 90 proteins identified as NS5A interactors. Of these candidates, AHCYL1 was selected for further study. In the present study, we verified the physical interaction between NS5A and AHCYL1 by both in vitro pulldown and coimmunoprecipitation assays. Furthermore, HCV NS5A interacted with endogenous AHCYL1 in Jc1-infected cells. Both NS5A and AHCYL1 were colocalized in the cytoplasmic region in HCV-replicating cells. siRNAmediated knockdown of AHCYL1 abrogated HCV propagation. Exogenous expression of the siRNA-resistant AHCYL1 mutant, but not of the wild-type AHCYL1, restored HCV protein expression levels, indicating that AHCYL1 was required specifically for HCV propagation. Importantly, AHCYL1 was involved in the HCV internal ribosome entry site-mediated translation step of the HCV life cycle. Finally, we demonstrated that the proteasomal degradation pathway of AHCYL1 was modulated by persistent HCV infection. Collectively, these data suggest that HCV may modulate the AHCYL1 protein to promote viral propagation.


Assuntos
Hepacivirus/metabolismo , Hepatite C/enzimologia , Proteínas não Estruturais Virais/metabolismo , Hepacivirus/genética , Hepacivirus/crescimento & desenvolvimento , Hepatite C/genética , Hepatite C/virologia , Interações Hospedeiro-Patógeno , Humanos , Ligação Proteica , Proteínas não Estruturais Virais/genética
2.
Sci Rep ; 9(1): 7288, 2019 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-31086268

RESUMO

Hepatitis C virus (HCV) is the major causative agent of chronic liver diseases, including liver cirrhosis and hepatocellular carcinoma. The recent development of highly effective direct-acting antivirals (DAAs) has revolutionized the treatment of HCV patients. However, these DAAs are exorbitantly expensive for the majority of HCV patients worldwide. Moreover, these drugs still show genotypic difference in cure rate and have some resistant-associated variants. Tylophorine, a natural compound derived from Tylophora indica plants, is known to have anti-inflammatory and anti-cancerous growth activities. In the present study, we showed that two tylophorine intermediates, 5-Oxo-1-[(2,3,6,7-tetramethoxy-9-phenanthrenyl) methyl]-L-proline (O859585) and 2,3,6,7-tetramethoxy-9-phenanthrenecarboxylic acid (T298875), displayed anti-HCV activity with an EC50 of 38.25 µM for T298875 and 29.11~35.3 µM for O859585 in various HCV genotypes. We demonstrated that O859585 efficiently blocked HCV attachment by neutralizing free viral particles without affecting other stages of the HCV life cycle and interferon stimulation. O859585 interrupted binding between HCV E2 and CD81. Of note, co-treatment of O859585 with either interferon alpha (IFNα) or sofosbuvir exerted either an additive or synergistic antiviral activity in HCV-infected cells with no measurable effect on cell viability. Most importantly, O859585 in combination with IFNα and sofosbuvir exhibited synergistic effects on anti-HCV activity in primary human hepatocytes. Collectively, these data suggest that O859585 may be a novel antiviral agent for HCV therapy.


Assuntos
Alcaloides/farmacologia , Antivirais/farmacologia , Hepacivirus/efeitos dos fármacos , Hepatite C Crônica/tratamento farmacológico , Indolizinas/farmacologia , Fenantrenos/farmacologia , Prolina/farmacologia , Internalização do Vírus/efeitos dos fármacos , Alcaloides/química , Alcaloides/uso terapêutico , Antivirais/química , Antivirais/uso terapêutico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sinergismo Farmacológico , Quimioterapia Combinada , Células HEK293 , Hepacivirus/metabolismo , Hepatite C Crônica/virologia , Hepatócitos/metabolismo , Hepatócitos/virologia , Humanos , Indolizinas/química , Indolizinas/uso terapêutico , Interferon-alfa/farmacologia , Interferon-alfa/uso terapêutico , Fenantrenos/química , Fenantrenos/uso terapêutico , Cultura Primária de Células , Prolina/uso terapêutico , Sofosbuvir/farmacologia , Sofosbuvir/uso terapêutico , Tetraspanina 28/metabolismo , Tylophora/química , Proteínas do Envelope Viral/metabolismo
3.
Sci Rep ; 8(1): 15486, 2018 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-30341327

RESUMO

Hepatitis C virus (HCV) exploits an extensive network of host proteins to maintain chronic infection. Using RNA-Seq technology, we identified 30 host genes that were differentially expressed in cell culture grown HCV (HCVcc)-infected cells. Of these candidate genes, we selected solute carrier family 3 member 2 (SLC3A2) for further investigation. SLC3A2, also known as CD98hc, is a member of the solute carrier family and encodes a subunit of heterodimeric amino acid transporter. SLC3A2 and LAT1 constitute a heterodimeric transmembrane protein complex that catalyzes amino acid transport. In this study, we showed that HCV upregulated both mRNA and protein expression levels of SLC3A2 and this upregulation occurred through NS3/4A-mediated oxidative stress. HCV also elevated SLC3A2/LAT1 complex level and thus mammalian target of rapamycin complex 1 (mTORC1) signaling was activated. We further showed that L-leucine transport level was significantly increased in Jc1-infected cells as compared with mock-infected cells. Using RNA interference technology, we demonstrated that SLC3A2 was specifically required for the entry step but not for other stages of the HCV life cycle. These data suggest that SLC3A2 plays an important role in regulating HCV entry. Collectively, HCV exploits SLC3A2 for viral propagation and upregulation of SLC3A2 may contribute to HCV-mediated pathogenesis.


Assuntos
Cadeia Pesada da Proteína-1 Reguladora de Fusão/metabolismo , Hepacivirus/fisiologia , Hepatite C/virologia , Complexos Multiproteicos/metabolismo , Cadeia Pesada da Proteína-1 Reguladora de Fusão/genética , Regulação da Expressão Gênica , Células HEK293 , Humanos , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Leucina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Estresse Oxidativo , Transporte Proteico , RNA Interferente Pequeno/genética , Transdução de Sinais , Proteínas não Estruturais Virais/metabolismo , Internalização do Vírus , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA