Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Br J Haematol ; 202(4): 840-855, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37365680

RESUMO

Multiple myeloma (MM) is the second most common haematological malignancy. Despite the development of new drugs and treatments in recent years, the therapeutic outcomes of patients are not satisfactory. It is necessary to further investigate the molecular mechanism underlying MM progression. Herein, we found that high E2F2 expression was correlated with poor overall survival and advanced clinical stages in MM patients. Gain- and loss-of-function studies showed that E2F2 inhibited cell adhesion and consequently activated cell epithelial-to-mesenchymal transition (EMT) and migration. Further experiments revealed that E2F2 interacted with the PECAM1 promoter to suppress its transcriptional activity. The E2F2-knockdown-mediated promotion of cell adhesion was significantly reversed by the repression of PECAM1 expression. Finally, we observed that silencing E2F2 significantly inhibited viability and tumour progression in MM cell models and xenograft mouse models respectively. This study demonstrates that E2F2 plays a vital role as a tumour accelerator by inhibiting PECAM1-dependent cell adhesion and accelerating MM cell proliferation. Therefore, E2F2 may serve as a potential independent prognostic marker and therapeutic target for MM.


Assuntos
Mieloma Múltiplo , Humanos , Animais , Camundongos , Mieloma Múltiplo/genética , Molécula-1 de Adesão Celular Endotelial a Plaquetas/genética , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Adesão Celular/genética , Linhagem Celular Tumoral , Regulação da Expressão Gênica , Proliferação de Células , Fator de Transcrição E2F2/genética , Fator de Transcrição E2F2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA