Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
BMC Cancer ; 22(1): 1024, 2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36175852

RESUMO

BACKGROUND: Telomere dysfunction results in aneuploidy, and ongoing chromosomal abnormalities. The three-dimensional (3D) nuclear organization of telomeres allows for a distinction between normal and tumor cells. On the other hand, aurora kinase genes (AURKA and AURKB) play an important role regulating the cell cycle. A correlation between overexpression of aurora kinase genes and clinical aggressiveness has been demonstrated in different types of neoplasias. To better understand cellular and molecular mechanisms of CML evolution, it was examined telomere dysfunction (alterations in the 3D nuclear telomere architecture), and the expression levels of AURKA and AURKB genes in two clinical distinct subgroups of CML samples, from the same patient. METHODS: Eighteen CML patients, in total, 36 bone marrow samples (18 patients, chronic vs. accelerated/blast phase) were eligible for 3D telomeric investigations. Quantitative 3D imaging, cytologic diagnosis and cytogenetic determination of additional chromosomal abnormalities were assessed according to standard protocols. RESULTS: Using TeloView software, two CML subgroups were defined based on their 3D telomeric profiles, reflecting the different stages of the disease (chronic vs. accelerated/blast phase). Statistical analyses showed significant differences between the CML subgroups (p < 0.001). We also found that AURKA and AURKB mRNA were expressed at significantly higher levels in both CML subgroups, when compared with healthy donors. Our findings suggest that the evolution of CML progresses from a low to a high level of telomere dysfunction, that is, from an early stage to a more aggressive stage, followed by disease transformation, as demonstrated by telomere, additional chromosomal abnormalities, and gene expression profile dynamics. CONCLUSIONS: Thus, we demonstrated that 3D telomere organization, in accordance with the genomic instability observed in CML samples were able to distinguish subgroup CML patients. Classifying CML patients based on these characteristics might represent an important strategy to define better therapeutic strategies.


Assuntos
Doença Enxerto-Hospedeiro , Leucemia Mielogênica Crônica BCR-ABL Positiva , Leucemia Mieloide , Aurora Quinase A/genética , Crise Blástica , Aberrações Cromossômicas , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , RNA Mensageiro , Telômero/genética
2.
Cancers (Basel) ; 13(11)2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34071283

RESUMO

Chromosomal instability (CIN), the increasing rate in which cells acquire new chromosomal alterations, is one of the hallmarks of cancer. Many studies highlighted CIN as an important mechanism in the origin, progression, and relapse of acute myeloid leukemia (AML). The ambivalent feature of CIN as a cancer-promoting or cancer-suppressing mechanism might explain the prognostic variability. The latter, however, is described in very few studies. This review highlights the important CIN mechanisms in AML, showing that CIN signatures can occur largely in all the three major AML types (de novo AML, secondary-AML, and therapy-related-AML). CIN features in AML could also be age-related and reflect the heterogeneity of the disease. Although most of these abnormalities show an adverse prognostic value, they also offer a strong new perspective on personalized therapy approaches, which goes beyond assessing CIN in vitro in patient tumor samples to predict prognosis. Current and emerging AML therapies are exploring CIN to improve AML treatment, which includes blocking CIN or increasing CIN beyond the limit threshold to induce cell death. We argue that the characterization of CIN features, not included yet in the routine diagnostic of AML patients, might provide a better stratification of patients and be extended to a more personalized therapeutic approach.

3.
Biology (Basel) ; 10(2)2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33562578

RESUMO

The spectrum and incidence of gene fusions in papillary thyroid carcinoma (PTC) can differ significantly depending on the age of onset, histological subtype or radiation exposure history. In sporadic pediatric PTC, RET/PTC1-3 and AGK-BRAF fusions are common genetic alterations. The role of RET/PTC as a prognostic marker in pediatric PTC is still under investigation. We recently showed that AGK-BRAF fusion is prevalent in young patients (mean 10 years) and associated with specific and aggressive pathological features such as multifocality and lung metastasis. In this pilot study, we report a unique patient harboring three different foci: the first was positive for AGK-BRAF fusion, the second was positive for just RET/PTC3 fusion and the third was negative for both rearrangements. To investigate whether AGK-BRAF and RET/PTC3 are associated with genomic instability and chromatin modifications, we performed quantitative fluorescence in situ hybridization (Q-FISH) of telomere repeats followed by 3D imaging analysis and 3D super-resolution Structured Illumination Microscopy (3D-SIM) to analyze the DNA structure from the foci. We demonstrated in this preliminary study that AGK-BRAF is likely associated with higher levels of telomere-related genomic instability and chromatin remodeling in comparison with RET/PTC3 foci. Our results suggest a progressive disruption in chromatin structure in AGK-BRAF-positive cells, which might explain a more aggressive disease outcome in patients harboring this rearrangement.

4.
PLoS One ; 7(9): e44800, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22984562

RESUMO

BACKGROUND: Metastatic melanoma is a highly aggressive skin cancer and currently resistant to systemic therapy. Melanomas may involve genetic, epigenetic and metabolic abnormalities. Evidence is emerging that epigenetic changes might play a significant role in tumor cell plasticity and metastatic phenotype of melanoma cells. PRINCIPAL FINDINGS: In this study, we developed a systematic approach to identify genes implicated in melanoma progression. To do this, we used the Affymetrix GeneChip Arrays to screen 34,000 mouse transcripts in melan-a melanocytes, 4C pre-malignant melanocytes, 4C11- non-metastatic and 4C11+ metastatic melanoma cell lines. The genome-wide association studies revealed pathways commonly over-represented in the transition from immortalized to pre-malignant stage, and under-represented in the transition from non-metastatic to metastatic stage. Additionally, the treatment of cells with 10 µM 5-aza-2'-deoxycytidine (5AzaCdR) for 48 hours allowed us to identify genes differentially re-expressed at specific stages of melan-a malignant transformation. Treatment of human primary melanocytes with the demethylating agent 5AzaCdR in combination to the histone deacetylase inhibitor Trichostatin A (TSA) revealed changes on melanocyte morphology and gene expression which could be an indicator of epigenetic flexibility in normal melanocytes. Moreover, changes on gene expression recognized by affecting the melanocyte biology (NDRG2 and VDR), phenotype of metastatic melanoma cells (HSPB1 and SERPINE1) and response to cancer therapy (CTCF, NSD1 and SRC) were found when Mel-2 and/or Mel-3-derived patient metastases were exposed to 5AzaCdR plus TSA treatment. Hierarchical clustering and network analyses in a panel of five patient-derived metastatic melanoma cells showed gene interactions that have never been described in melanomas. SIGNIFICANCE: Despite the heterogeneity observed in melanomas, this study demonstrates the utility of our murine melanoma progression model to identify molecular markers commonly perturbed in metastasis. Additionally, the novel gene expression signature identified here may be useful in the future into a model more closely related to translational research.


Assuntos
Perfilação da Expressão Gênica , Melanócitos/metabolismo , Melanoma/metabolismo , Neoplasias Cutâneas/metabolismo , Animais , Azacitidina/análogos & derivados , Azacitidina/metabolismo , Linhagem Celular Tumoral , Progressão da Doença , Epigênese Genética , Feminino , Humanos , Ácidos Hidroxâmicos/farmacologia , Cariotipagem , Melanócitos/citologia , Melanoma/genética , Camundongos , Camundongos Endogâmicos C57BL , Metástase Neoplásica , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Risco , Neoplasias Cutâneas/genética
5.
Neoplasia ; 12(1): 11-9, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20072649

RESUMO

Aneuploidy and chromosomal instability (CIN) are hallmarks of most solid tumors. These alterations may result from inaccurate chromosomal segregation during mitosis, which can occur through several mechanisms including defective telomere metabolism, centrosome amplification, dysfunctional centromeres, and/or defective spindle checkpoint control. In this work, we used an in vitro murine melanoma model that uses a cellular adhesion blockade as a transforming factor to characterize telomeric and centromeric alterations that accompany melanocyte transformation. To study the timing of the occurrence of telomere shortening in this transformation model, we analyzed the profile of telomere length by quantitative fluorescent in situ hybridization and found that telomere length significantly decreased as additional rounds of cell adhesion blockages were performed. Together with it, an increase in telomere-free ends and complex karyotypic aberrations were also found, which include Robertsonian fusions in 100% of metaphases of the metastatic melanoma cells. These findings are in agreement with the idea that telomere length abnormalities seem to be one of the earliest genetic alterations acquired in the multistep process of malignant transformation and that telomere abnormalities result in telomere aggregation, breakage-bridge-fusion cycles, and CIN. Another remarkable feature of this model is the abundance of centromeric instability manifested as centromere fragments and centromeric fusions. Taken together, our results illustrate for this melanoma model CIN with a structural signature of centromere breakage and telomeric loss.


Assuntos
Centrômero/genética , Instabilidade Genômica , Melanoma Experimental/genética , Telômero/genética , Animais , Linhagem Celular , Proliferação de Células , Aberrações Cromossômicas , Feminino , Regulação Enzimológica da Expressão Gênica , Hibridização in Situ Fluorescente , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Cariotipagem Espectral , Telomerase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA