Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Fluoresc ; 31(1): 175-184, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33188635

RESUMO

This study evaluated three isoniazid-based N-acylhydrazone derivatives (HL1, HL2, and HL3) varying their substituting groups (-H, -N(CH3)2, and -NO2) as potential chemosensors for Zn2+ ions. To this end, the absorption and emission properties of these derivatives were investigated in the presence of Zn2+ ions. Results point to the derivative HL2 as the best chemosensor for Zn2+ ions because of its comparatively higher sensitivity. The color of this derivative changed from colorless to strong yellow with zinc addition, as indicated by the shift in UV-vis spectrum. Moreover, HL2 was the only derivative to emit fluorescence in the presence of Zn2+ ions, attributable to PET inhibition and bond isomerization promoted by coordination with this metal. LOD, LOQ, and binding constant values for HL2 + Zn2+ were 0.43 µmol.l-1, 0.93 µmol.l-1, and 5.04 × 1012 l.mol-1, respectively. The fluorescence of HL2 with other metal ions (Fe3+, Mg2+, Na+, Cd2+, Cu2+, Co2+, Ni2+, Ca2+, and K+) was also investigated. Zn2+ yielded the best result without Cd2+ interferences. Job's Plot showed that the stoichiometric ratio of the complex formed by HL2 and Zn2+ ions is 2:1 (ligand:metal). The strip test with adsorbed HL2 indicated fluorescence in the presence of zinc ions under 365 nm UV irradiation.

2.
Environ Sci Pollut Res Int ; 27(3): 2868-2880, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31836972

RESUMO

Many organic dye pollutants have been identified in rivers and lakes around the world, and concern is growing with them as they cause serious changes in the ecological balance of aquatic environments. One of these dyes is rhodamine R6G, which is very water-soluble and has a high corrosive power. Therefore, Clitoria fairchildiana (CF) pods were used as a biosorbent to remove R6G from synthetic dye effluents. CF was characterized by infrared spectroscopy, thermogravimetric analysis, x-ray diffraction, elemental analysis, Boehm titration, and zero charge point measurements. The influence of various factors, such as solution pH, contact time, adsorbent mass, and concentration of R6G, was studied using batch equilibrium experiments. The optimum contact time to reach equilibrium was found to be 15 min, while the optimum adsorbent dose was 8 g L-1. The maximum adsorption capacity of CF (73.84 mg g-1) was observed at pH 6.4 and 298.15 K. Adsorption kinetics followed a pseudo-second-order law, and the isotherm could be best fitted with a Liu model. The obtained thermodynamic parameters indicate that the adsorption of R6G is spontaneous and enthalpy-driven. We thus conclude that CF is an efficient, green, and readily available biosorbent for dye removal from wastewater.


Assuntos
Clitoria/química , Rodaminas/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Adsorção , Concentração de Íons de Hidrogênio , Cinética , Termodinâmica
3.
J Inorg Biochem ; 105(12): 1767-73, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22001498

RESUMO

Continuing our interest in tridentate ligands to develop new prototypes of cobalt-based metallodrugs for combating cancer, modifications in the backbone of HL1, [(2-hydroxybenzyl)(2-(pyridil-2-yl)ethyl]amine) were proposed in order to modulate the redox potential of new Co(III) complexes. Three ligands with electron withdrawing groups were synthesized: HL2: [(2-hydroxy-5-nitrobenzyl)(2-(pyridil-2-yl)ethyl]amine); HL3: [(2-hydroxybenzyl)(2-(pyridil-2-yl)ethyl]imine) and HL4: [(2-hydroxy-5-nitrobenzyl)(2-(pyridil-2-yl)ethyl]imine). They were used to obtain the respective mononuclear complexes 2, 3 and 4, which are discussed compared to the previous reported complex 1 (obtained from HL1). The new complexes were characterized and studied by several techniques including X-ray crystallography, elemental and conductimetric analysis, IR, UV-vis and (1)H NMR spectroscopies, and electrochemistry. The substitutions of the group in the para position of the phenol (HL1 and HL2) and the imine instead of the amine (HL3 and HL4), promote anodic shifts in the complexes reduction potentials. The influence of these substitutions in the biological activities of the Co(III) complexes against the murine melanoma cell line (B16F10) was also evaluated. Little effect was observed on cellular viability decrease for all free ligands, however the coordination to Co(III) enhances their activities in the following range: 1>4≈2>3. The data suggest that no straight correlation can be addressed between the reduction potential of the Co(III) center and the cell viability.


Assuntos
Antineoplásicos/síntese química , Cobalto , Complexos de Coordenação/síntese química , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Cristalografia por Raios X , Ensaios de Seleção de Medicamentos Antitumorais , Eletroquímica , Concentração Inibidora 50 , Camundongos , Modelos Moleculares , Conformação Molecular , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA