Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biol Cybern ; 114(4-5): 461-471, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32656680

RESUMO

The amount of power in different frequency bands of the electroencephalogram (EEG) carries information about the behavioral state of a subject. Hence, neurologists treating epileptic patients monitor the temporal evolution of the different bands. We propose a covariance-based method to detect and characterize epileptic seizures operating on the band-filtered EEG signal. The algorithm is unsupervised and performs a principal component analysis of intra-cranial EEG recordings, detecting transient fluctuations of the power in each frequency band. Its simplicity makes it suitable for online implementation. Good sampling of the non-ictal periods is required, while no demands are imposed on the amount of data during ictal activity. We tested the method with 32 seizures registered in 5 patients. The area below the resulting receiver-operating characteristic curves was 87% for the detection of seizures and 91% for the detection of recruited electrodes. To identify the behaviorally relevant correlates of the physiological signal, we identified transient changes in the variance of each band that were correlated with the degree of loss of consciousness, the latter assessed by the so-called Consciousness Seizure Scale, summarizing the performance of the subject in a number of behavioral tests requested during seizures. We concluded that those crisis with maximal impairment of consciousness tended to exhibit an increase in variance approximately 40 s after seizure onset, with predominant power in the theta and alpha bands and reduced delta and beta activity.


Assuntos
Epilepsia , Convulsões , Algoritmos , Eletroencefalografia , Epilepsia/diagnóstico , Humanos , Convulsões/diagnóstico
2.
Entropy (Basel) ; 20(8)2018 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-33265660

RESUMO

In the study of the neural code, information-theoretical methods have the advantage of making no assumptions about the probabilistic mapping between stimuli and responses. In the sensory domain, several methods have been developed to quantify the amount of information encoded in neural activity, without necessarily identifying the specific stimulus or response features that instantiate the code. As a proof of concept, here we extend those methods to the encoding of kinematic information in a navigating rodent. We estimate the information encoded in two well-characterized codes, mediated by the firing rate of neurons, and by the phase-of-firing with respect to the theta-filtered local field potential. In addition, we also consider a novel code, mediated by the delta-filtered local field potential. We find that all three codes transmit significant amounts of kinematic information, and informative neurons tend to employ a combination of codes. Cells tend to encode conjunctions of kinematic features, so that most of the informative neurons fall outside the traditional cell types employed to classify spatially-selective units. We conclude that a broad perspective on the candidate stimulus and response features expands the repertoire of strategies with which kinematic information is encoded.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...