Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ISME J ; 16(9): 2169-2180, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35726021

RESUMO

Environmental virus communities are highly diverse. However, the infection physiology underlying the evolution of diverse phage lineages and their ecological consequences are largely unknown. T7-like cyanophages are abundant in nature and infect the marine unicellular cyanobacteria, Synechococcus and Prochlorococcus, important primary producers in the oceans. Viruses belonging to this genus are divided into two distinct phylogenetic clades: clade A and clade B. These viruses have narrow host-ranges with clade A phages primarily infecting Synechococcus genotypes, while clade B phages are more diverse and can infect either Synechococcus or Prochlorococcus genotypes. Here we investigated infection properties (life history traits) and environmental abundances of these two clades of T7-like cyanophages. We show that clade A cyanophages have more rapid infection dynamics, larger burst sizes and greater virulence than clade B cyanophages. However, clade B cyanophages were at least 10-fold more abundant in all seasons, and infected more cyanobacteria, than clade A cyanophages in the Red Sea. Models predicted that steady-state cyanophage abundances, infection frequency, and virus-induced mortality, peak at intermediate virulence values. Our findings indicate that differences in infection properties are reflected in virus phylogeny at the clade level. They further indicate that infection properties, together with differences in subclade diversity and host repertoire, have important ecological consequences with the less aggressive, more diverse virus clade having greater ecological impacts.


Assuntos
Bacteriófagos , Prochlorococcus , Synechococcus , Bacteriófagos/genética , Oceano Índico , Filogenia , Prochlorococcus/genética , Água do Mar , Synechococcus/genética
2.
Nat Microbiol ; 7(4): 570-580, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35365792

RESUMO

The photosynthetic picocyanobacteria Prochlorococcus and Synechococcus are models for dissecting how ecological niches are defined by environmental conditions, but how interactions with bacteriophages affect picocyanobacterial biogeography in open ocean biomes has rarely been assessed. We applied single-virus and single-cell infection approaches to quantify cyanophage abundance and infected picocyanobacteria in 87 surface water samples from five transects that traversed approximately 2,200 km in the North Pacific Ocean on three cruises, with a duration of 2-4 weeks, between 2015 and 2017. We detected a 550-km-wide hotspot of cyanophages and virus-infected picocyanobacteria in the transition zone between the North Pacific Subtropical and Subpolar gyres that was present in each transect. Notably, the hotspot occurred at a consistent temperature and displayed distinct cyanophage-lineage composition on all transects. On two of these transects, the levels of infection in the hotspot were estimated to be sufficient to substantially limit the geographical range of Prochlorococcus. Coincident with the detection of high levels of virally infected picocyanobacteria, we measured an increase of 10-100-fold in the Synechococcus populations in samples that are usually dominated by Prochlorococcus. We developed a multiple regression model of cyanophages, temperature and chlorophyll concentrations that inferred that the hotspot extended across the North Pacific Ocean, creating a biological boundary between gyres, with the potential to release organic matter comparable to that of the sevenfold-larger North Pacific Subtropical Gyre. Our results highlight the probable impact of viruses on large-scale phytoplankton biogeography and biogeochemistry in distinct regions of the oceans.


Assuntos
Prochlorococcus , Synechococcus , Vírus , Oceano Pacífico , Água do Mar/microbiologia
3.
Nat Microbiol ; 3(1): 62-72, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29085077

RESUMO

Viruses are globally abundant and extremely diverse in their genetic make-up and in the hosts they infect. Although they influence the abundance, diversity and evolution of their hosts, current methods are inadequate for gaining a quantitative understanding of their impact on these processes. Here we report the adaptation of the solid-phase single-molecule PCR polony method for the quantification of taxonomically relevant groups of diverse viruses. Using T7-like cyanophages as our model, we found the polony method to be far superior to regular quantitative PCR methods and droplet digital PCR when degenerate primers were used to encompass the group's diversity. This method revealed that T7-like cyanophages were highly abundant in the Red Sea in spring 2013, reaching 770,000 phages ml-1, and displaying a similar depth distribution pattern to cyanobacteria. Furthermore, the abundances of two major clades within the T7-like cyanophages differed dramatically throughout the water column: clade B phages that carry the psbA photosynthesis gene and infect either Synechococcus or Prochlorococcus were at least 20-fold more abundant than clade A phages that lack psbA and infect Synechococcus hosts. Such measurements are of paramount importance for understanding virus population dynamics and the impact of viruses on different microbial taxa and for modelling viral influence on ecosystem functioning on a global scale.


Assuntos
Bacteriófagos/classificação , Metagenômica/métodos , Filogenia , Prochlorococcus/virologia , Água do Mar/virologia , Synechococcus/virologia , Bacteriófagos/genética , Vírus de DNA/genética , Ecossistema , Genes Virais , Genoma Viral/genética , Oceano Índico , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA