Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glob Chang Biol ; 30(2): e17190, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38403855

RESUMO

Enhancement of net primary production (NPP) in forests as atmospheric [CO2 ] increases is likely limited by the availability of other growth resources. The Duke Free Air CO2 Enrichment (FACE) experiment was located on a moderate-fertility site in the southeastern US, in a loblolly pine (Pinus taeda L.) plantation with broadleaved species growing mostly in mid-canopy and understory. Duke FACE ran from 1994 to 2010 and combined elevated [CO2 ] (eCO2 ) with nitrogen (N) additions. We assessed the spatial and temporal variation of NPP response using a dataset that includes previously unpublished data from 6 years of the replicated CO2 × N experiment and extends to 2 years beyond the termination of enrichment. Averaged over time (1997-2010), NPP of pine and broadleaved species were 38% and 52% higher under eCO2 compared to ambient conditions. Furthermore, there was no evidence of a decline in enhancement over time in any plot regardless of its native site quality. The relation between spatial variation in the response and native site quality was suggested but inconclusive. Nitrogen amendments under eCO2 , in turn, resulted in an additional 11% increase in pine NPP. For pine, the eCO2 -induced increase in NPP was similar above- and belowground and was driven by both increased leaf area index (L) and production efficiency (PE = NPP/L). For broadleaved species, coarse-root biomass production was more than 200% higher under eCO2 and accounted for the entire production response, driven by increased PE. Notably, the fraction of annual NPP retained in total living biomass was higher under eCO2 , reflecting a slight shift in allocation fraction to woody mass and a lower mortality rate. Our findings also imply that tree growth may not have been only N-limited, but perhaps constrained by the availability of other nutrients. The observed sustained NPP enhancement, even without N-additions, demonstrates no progressive N limitation.


Assuntos
Dióxido de Carbono , Pinus , Nitrogênio , Pinus/fisiologia , Florestas , Árvores , Pinus taeda , Folhas de Planta/fisiologia
2.
Tree Physiol ; 21(16): 1183-93, 2001 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-11600340

RESUMO

Stem respiration and growth in 10-year-old loblolly pine (Pinus taeda L.) plantations were measured monthly during the third year of fertilization and irrigation treatments to determine whether soil resource availability differentially altered growth and respiration in stem tissue. Fertilized trees had significantly greater stem biomass, stem nitrogen concentration ([N]) and growth rate than unfertilized trees. Stem respiration (Rt) was significantly greater in fertilized trees when expressed on a per unit surface area (Rt,a, micromol CO2 m-2 s-1), sapwood volume (Rt,v, micromol CO2 m-3 s-1), or mass (Rt,w, nmol CO2 g-1 s-1) basis; however, there was no difference between treatments when expressed as a function of stem N content (Rt,n, micromol CO2 (mol N)-1 s-1). Irrigation had no significant effect on Rt or annual stem growth. Daily total respiration (Rd, mol CO2 m-2 day-1) and stem diameter growth both had a seasonal bimodal pattern with peaks in early spring and midsummer. Stem [N] declined significantly during the growing season. Stem growth rate and [N] explained 75% of the seasonal variation in temperature-normalized Rt,a. The mature tissue method was used to partition total stem respiration (Rt) into maintenance (Rm) and growth (Rg) components. There was a linear correlation between winter Rt,v, a measure of basal Rm, and sapwood N content; however, Rt,v per unit N was greater in January before diameter growth started than in the following December after growth ceased, indicating that Rt,v declined as stem diameter increased. Consequently, estimates of annual maintenance respiration (RM) based on January data were 44% higher than estimates based on December data. Growth respiration was correlated with stem growth rate (r2 = 0.55). The growth respiration coefficient (rg)-the slope of the relationship between Rg and stem growth rate-was 0.24. Respiration accounted for 37% of annual stem carbon budget. Stem carbon-use efficiency (CUE)-the ratio of stem growth to stem growth plus respiration-averaged 0.63 and was unaffected by fertilization.


Assuntos
Respiração Celular/fisiologia , Pinus/crescimento & desenvolvimento , Caules de Planta/crescimento & desenvolvimento , Nitrogênio/análise , Pinus/metabolismo , Pinus/fisiologia , Pinus taeda , Caules de Planta/química , Caules de Planta/metabolismo , Caules de Planta/fisiologia , Estações do Ano , Solo
3.
J Med Chem ; 44(17): 2814-26, 2001 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-11495592

RESUMO

Analogues of the kappa-receptor agonist methyl (R)-4-(3,4-dichlorophenylacetyl)-3-(pyrrolidin-1-ylmethyl)piperazine-1-carboxylate (GR-89,696, 6) bearing an additional methyl substituent in the side chain are synthesized and evaluated for their kappa-receptor affinity and selectivity. A key step in the synthesis is the stereoselective reductive amination of the ketones 9, 18, and 19 with pyrrolidine and NaBH(3)CN, which succeeds only in the presence of the Lewis acid Ti(OiPr)(4). Whereas the BOC-substituted ketone 9 affords the unlike and like diastereomers of 10 in a ratio of 70:30, the diastereoselectivity during the reductive amination of the butyl and phenyl substituted ketones 18 and 19 is enhanced to 85:15 (butyl derivative) and >95:<5 (phenyl derivative) in favor of the unlike diastereomers. In receptor binding studies using the radioligand [(3)H]U-69,593 the (S,S)-configured methyl carbamate (S,S)-14 reveals the highest kappa-receptor affinity (K(i) = 0.31 nM) within this series, even exceeding the lead kappa-agonist 6 (GR-89,696). A slightly reduced kappa-receptor affinity is observed with the propionamide (S,S)-13 (K(i) = 0.67 nM). The kappa-receptor affinity of piperazines with acyl or alkoxycarbonyl residues at both nitrogen atoms (11, 13, 14) decreases in the order (S,S) > (R,R) > (S,R) > (R,S). The methyl carbamate (S,S)-14 discloses a unique activity profile also binding at mu-receptors in the subnanomolar range (K(i) = 0.36 nM). In a functional assay, i.e., by measuring acetylcholine release in rabbit hippocampus slices, the agonistic effects of the methyl carbamate (S,S)-14 and the propionamide (S,S)-13 are demonstrated. Only weak kappa- and mu-receptor affinities are found with the butyl- and phenyl-substituted piperazines 22 and 23. However, considerable sigma(1)-receptor affinity is determined for the enantiomeric, unlike-configured butyl derivatives (R,S)-22 and (S,R)-22 with K(i)-values of 40.2 nM and 81.0 nM, respectively.


Assuntos
Piperazinas/síntese química , Pirrolidinas/síntese química , Receptores Opioides kappa/agonistas , (trans)-Isômero de 3,4-dicloro-N-metil-N-(2-(1-pirrolidinil)-ciclo-hexil)-benzenoacetamida/química , Acetilcolina/metabolismo , Animais , Sítios de Ligação , Encéfalo/metabolismo , Estimulação Elétrica , Cobaias , Hipocampo/metabolismo , Técnicas In Vitro , Piperazinas/química , Piperazinas/metabolismo , Piperazinas/farmacologia , Pirrolidinas/química , Pirrolidinas/metabolismo , Pirrolidinas/farmacologia , Coelhos , Ensaio Radioligante , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores Opioides delta/metabolismo , Receptores Opioides kappa/metabolismo , Receptores Opioides mu/metabolismo , Estereoisomerismo , Relação Estrutura-Atividade
4.
Tree Physiol ; 21(9): 609-16, 2001 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-11390305

RESUMO

Concentrations of total soluble phenolics, catechin, proanthocyanidins (PA), lignin and nitrogen (N) were measured in loblolly pine (Pinus taeda L.) needles exposed to either ambient CO(2) concentration ([CO(2)]), ambient plus 175 or ambient plus 350 micromol CO(2) mol(-1) in branch chambers for 2 years. The CO(2) treatments were superimposed on a 2 x 2 factorial combination of irrigation and fertilization treatments. In addition, we compared the effects of branch chambers and open-top chambers on needle chemistry. Proanthocyanidin and N concentrations were measured in needles from branch chambers and from trees in open-top chambers exposed concurrently for two years to either ambient [CO(2)] or ambient plus 200 micromol CO(2) mol(-1) in combination with a fertilization treatment. In the branch chambers, concentrations of total soluble phenolics in needles generally increased with needle age. Concentrations of total soluble phenolics, catechin and PA in needle extracts increased about 11% in response to the elevated [CO(2)] treatments. There were no significant treatment effects on foliar lignin concentrations. Nitrogen concentrations were about 10% lower in needles from the elevated [CO(2)] treatments than in needles from the ambient [CO(2)] treatments. Soluble phenolic and PA concentrations were higher in the control and irrigated soil treatments in about half of the comparisons; otherwise, differences were not statistically significant. Needle N concentrations increased 23% in response to fertilization. Treatment effects on PA and N concentrations were similar between branch and open-top chambers, although in this part of the study N concentrations were not significantly affected by the CO(2) treatments in either the branch or open-top chambers. We conclude that elevated [CO(2)] and low N availability affected foliar chemical composition, which could in turn affect plant-pathogen interactions, decomposition rates and mineral nutrient cycling.


Assuntos
Nitrogênio/análise , Fenóis/análise , Pinus/fisiologia , Proantocianidinas , Antocianinas/análise , Dióxido de Carbono/fisiologia , Catequina/análise , Lignina/análise , North Carolina , Pinus/química , Pinus taeda , Folhas de Planta/química , Folhas de Planta/fisiologia , Estações do Ano
5.
Tree Physiol ; 18(1): 11-20, 1998 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12651294

RESUMO

We measured dormant season (November through February) maintenance respiration rates (R(m)) in stems and branches of 9-year-old loblolly pine (Pinus taeda L.) growing in plots under conditions of controlled nutrient and water supply in an effort to determine the relationships between R(m) and tissue size (surface area, sapwood volume, sapwood dry weight), tissue nitrogen content and temperature. Dormant season R(m) per unit size (i.e., surface area, &mgr;mol m(-2) s(-1); sapwood volume, &mgr;mol m(-3) s(-1); or sapwood dry weight, nmol g(-1) s(-1)) varied with tissue size, but was constant with respect to tissue nitrogen content (&mgr;mol mol(-1) N s(-1)). Cambium temperature accounted for 61 and 77% of the variation in stem and branch respiration, respectively. The basal respiration rate (respiration at 0 degrees C) increased with tissue nitrogen content, however, the Q(10) did not. Improved nutrition more than doubled stem basal respiration rate and increased branch basal respiration by 38%. Exponential equations were developed to model stem and branch respiration as a function of cambium temperature and tissue nitrogen content. We conclude that failure to account for tissue nitrogen effects on respiration rates will result in serious errors when estimating annual maintenance costs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...