Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Dent J (Basel) ; 11(3)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36975573

RESUMO

This study analyzed the fracture load before and after a chewing simulation of zirconia crowns that were trepanned and repaired using composite resin. Overall, 3 groups with 15 5Y-PSZ crowns in each group were tested. For group A, the fracture load of the unmodified crowns was evaluated. For group B, the crowns were trepanned and repaired using composite resin, also followed by a fracture test. For group C, crowns were prepared like in group B but received thermomechanical cycling before the final fracture tests. Furthermore, scanning electron microscopy (SEM) and X-ray microscopy (XRM) analysis were performed for group C. The mean fracture loads and standard deviation were 2260 N ± 410 N (group A), 1720 N ± 380 N (group B), and 1540 N ± 280 N (group C). Tukey-Kramer multiple comparisons showed a significant difference between groups A and B (p < 0.01) and groups A and C (p < 0.01). After ageing, surface fissures were detected via SEM, but no cracks that reached from the occlusal to the inner side of the crown were detected via XRM. Within the limitations of this study, it can be stated that trepanned and composite-repaired 5Y-PSZ crowns show lower fracture loads than 5Y-PSZ crowns without trepanation.

2.
Materials (Basel) ; 15(23)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36499789

RESUMO

As a lightweight construction material, aluminum plays a key role in weight reduction and, thus, sustainability in the transport industry. The brazing of aluminum and its alloys is impeded by the natural passivating oxide layer, which interferes with the brazing process. The presented study investigates the possibility of using a thermal silane-doped argon plasma to reduce this oxide layer in situ and thus eliminating the need to use hazardous chemical fluxes to enable high-quality brazing. Using plasma spectroscopy and an oxygen partial pressure probe, it was shown that a silane-doped argon plasma could significantly reduce the oxygen concentration around the plasma in a thermal plasma brazing process. Oxygen concentrations below 10-16 vol.-% were achieved. Additionally, metallographic analyses showed that the thickness of an artificially produced Al2O3-Layer on top of AlMg1 samples could be substantially reduced by more than 50%. With the oxide layer removed and inhibition of re-oxidation, silane-doped plasma brazing has the potential to become an economically efficient new joining method.

3.
J Appl Biomater Funct Mater ; 20: 22808000221142679, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36545893

RESUMO

The magnesium alloy LAE442 showed promising results as a bone substitute in numerous studies in non-weight bearing bone defects. This study aimed to investigate the in vivo behavior of wedge-shaped open-pored LAE442 scaffolds modified with two different coatings (magnesium fluoride (MgF2, group 1)) or magnesium fluoride/calcium phosphate (MgF2/CaP, group 2)) in a partial weight-bearing rabbit tibia defect model. The implantation of the scaffolds was performed as an open wedge corrective osteotomy in the tibia of 40 rabbits and followed for observation periods of 6, 12, 24, and 36 weeks. Radiological and microcomputed tomographic examinations were performed in vivo. X-ray microscopic, histological, histomorphometric, and SEM/EDS analyses were performed at the end of each time period. µCT measurements and X-ray microscopy showed a slight decrease in volume and density of the scaffolds of both coatings. Histologically, endosteal and periosteal callus formation with good bridging and stabilization of the osteotomy gap and ingrowth of bone into the scaffold was seen. The MgF2 coating favored better bridging of the osteotomy gap and more bone-scaffold contacts, especially at later examination time points. Overall, the scaffolds of both coatings met the requirement to withstand the loads after an open wedge corrective osteotomy of the proximal rabbit tibia. However, in addition to the inhomogeneous degradation behavior of individual scaffolds, an accumulation of gas appeared, so the scaffold material should be revised again regarding size dimension and composition.


Assuntos
Fluoretos , Magnésio , Animais , Coelhos , Ligas , Alicerces Teciduais
4.
J Fungi (Basel) ; 8(5)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35628790

RESUMO

N-chlorotaurine (NCT) can be used topically as a well-tolerated anti-infective at different body sites. The aim of this study was to investigate the efficacy of inhaled NCT in a mouse model of fungal pneumonia. Specific pathogen-free female C57BL/6JRj seven-week-old mice were immune-suppressed with cyclophosphamide. After 4 days, the mice were inoculated intranasally with 1.5 × 10E7 spores of Lichtheimia corymbifera or 1.0 × 10E7 spores of Aspergillus fumigatus. They were randomized and treated three times daily for 10 min with aerosolized 1% NCT or 0.9% sodium chloride starting 1 h after the inoculation. The mice were observed for survival for two weeks, and fungal load, blood inflammation parameters, bronchoalveolar lavage, and histology of organs were evaluated upon their death or at the end of this period. Inhalations were well-tolerated. After challenge with L. corymbifera, seven out of the nine mice (77.8%) survived for 15 days in the test group, which was in strong contrast to one out of the nine mice (11.1%) in the control group (p = 0.0049). The count of colony-forming units in the homogenized lung tissues came to 1.60 (1.30; 1.99; median, quartiles) log10 in the test group and to 4.26 (2.17; 4.53) log10 in the control group (p = 0.0032). Body weight and temperature, white blood count, and haptoglobin significantly improved with NCT treatment. With A. fumigatus, all the mice except for one in the test group died within 4 days without a significant difference from the control group. Inhaled NCT applied early demonstrated a highly significant curative effect in L. corymbifera pneumonia, while this could not be shown in A. fumigatus pneumonia, probably due to a too high inoculum. Nevertheless, this study for the first time disclosed efficacy of NCT in pneumonia in vivo.

5.
Materials (Basel) ; 15(5)2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35268923

RESUMO

Within the framework of the Collaborative Research Center 1153, we investigated novel process chains for the production of bulk components with different metals as joining partners. In the present study, the co-extrusion of coaxially reinforced hollow profiles was employed to manufacture semi-finished products for a subsequent die-forging process, which was then used for the manufacture of hybrid bearing bushings. The hybrid hollow profiles, made of the aluminum alloy EN AW-6082 paired with either the case-hardening steel 20MnCr5, the stainless steel X5CrNi18-10, or the rolling bearing steel 100Cr6, were produced by Lateral Angular Co-Extrusion. Push-out tests on hybrid hollow sections over the entire sample cross-section showed shear strengths of 44 MPa ± 8 MPa (100Cr6) up to 63 MPa ± 5 MPa (X5CrNi18-10). In particular, the influence of force and form closure on the joint zone could be determined using specimen segments tested in shear compression. Locally, shear strengths of up to 131 MPa (X5CrNi18-10) were demonstrated in the shear compression test. From these samples, lamellae for microstructural analysis were prepared with a Focused Ion Beam. Detailed analyses showed that for all material combinations, a material bond in the form of an ultra-thin intermetallic phase seam with a thickness of up to 50 nm could be established.

6.
Materials (Basel) ; 15(4)2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35207958

RESUMO

Hydrogen-assisted cracking is a major challenge in underwater wet welding of high-strength steels with a carbon equivalent larger than 0.4 wt%. In dry welding processes, post-weld heat treatment can reduce the hardness in the heat-affected zone while simultaneously lowering the diffusible hydrogen concentration in the weldment. However, common heat treatments known from atmospheric welding under dry conditions are non-applicable in the wet environment. Induction heating could make a difference since the heat is generated directly in the workpiece. In the present study, the thermal input by using a commercial induction heating system under water was characterized first. Then, the effect of an additional induction heating was examined with respect to the resulting microstructure of weldments on structural steels with different strength and composition. Moreover, the diffusible hydrogen content in weld metal was analyzed by the carrier gas hot extraction method. Post-weld induction heating could reduce the diffusible hydrogen content by -34% in 30 m simulated water depth.

7.
J Appl Biomater Funct Mater ; 20: 22808000221078168, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35189733

RESUMO

Magnesium has mechanical properties similar to those of bone and is being considered as a potential bone substitute. In the present study, two different pore sized scaffolds of the Mg alloy LAE442, coated with magnesium fluoride, were compared. The scaffolds had interconnecting pores of either 400 (p400) or 500 µm (p500). ß-TCP served as control. Ten scaffolds per time group (6, 12, 24, 36 weeks) were implanted in the trochanter major of rabbits. Histological analyses, µCT scans, and SEM/EDX were performed. The scaffolds showed slow volume decreases (week 36 p400: 9.9%; p500: 7.5%), which were accompanied by uncritical gas releases. In contrast, ß-TCP showed accelerated resorption (78.5%) and significantly more new bone inside (18.19 ± 1.47 mm3). Bone fragments grew into p400 (0.17 ± 0.19 mm3) and p500 (0.36 ± 0.26 mm3), reaching the centrally located pores within p500 more frequently. In particular, p400 displayed a more uneven and progressively larger surface area (week 36 p400: 253.22 ± 19.44; p500: 219.19 ± 4.76 mm2). A better osseointegration of p500 was indicated by significantly more trabecular contacts and a 200 µm wide bone matrix being in the process of mineralization and in permanent contact with the scaffold. The number of macrophages and foreign body giant cells were at an acceptable level concerning resorbable biomaterials. In terms of ingrown bone and integrative properties, LAE442 scaffolds could not achieve the results of ß-TCP. In this long-term study, p500 appears to be a biocompatible and more osteoconductive pore size for the Mg alloy LAE442.


Assuntos
Ligas , Substitutos Ósseos , Ligas/farmacologia , Animais , Materiais Biocompatíveis/farmacologia , Regeneração Óssea , Substitutos Ósseos/farmacologia , Porosidade , Coelhos , Alicerces Teciduais
8.
Brain Commun ; 3(4): fcab239, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34708207

RESUMO

Epilepsy animal models indicate pronounced changes in the expression and rearrangement of GABAA receptor subunits in the hippocampus and in para-hippocampal areas, including widespread downregulation of the subunits α5 and δ, and upregulation of α4, subunits that mediate tonic inhibition of GABA. In this case-control study, we investigated changes in the expression of subunits α4, α5 and δ in hippocampal specimens of drug resistant temporal lobe epilepsy patients who underwent epilepsy surgery. Using in situ hybridization, immunohistochemistry and α5-specific receptor autoradiography, we characterized expression of the receptor subunits in specimens from patients with and without Ammon's horn sclerosis compared to post-mortem controls. Expression of the α5-subunit was abundant throughout all subfields of the hippocampus, including the dentate gyrus, sectors CA1 and CA3, the subiculum and pre- and parasubiculum. Significant but weaker expression was detected for subunits α4 and δ notably in the granule cell/molecular layer of control specimens, but was faint in the other parts of the hippocampus. Expression of all three subunits was similarly altered in sclerotic and non-sclerotic specimens. Respective mRNA levels were increased by about 50-80% in the granule cell layer compared with post-mortem controls. Subunit α5 mRNA levels and immunoreactivities were also increased in the sector CA3 and in the subiculum. Autoradiography for α5-containing receptors using [3H]L-655,708 as ligand showed significantly increased binding in the molecular layer of the dentate gyrus in non-sclerotic specimens. Increased expression of the α5 and δ subunits is in contrast to the previously observed downregulation of these subunits in different epilepsy models, whereas increased expression of α4 in temporal lobe epilepsy patients is consistent with that in the rodent models. Our findings indicate increased tonic inhibition likely representing an endogenous anticonvulsive mechanism in temporal lobe epilepsy.

9.
Eur Surg Res ; 62(2): 97-104, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34023826

RESUMO

BACKGROUND: Postoperative pancreatic fistula (POPF) is a major complication in pancreatic surgery and can cause considerable postoperative morbidity. Advanced surgical-technical approaches to prevent POPF did not yield a substantial improvement. To investigate innovative treatments, experimental animal models of distal pancreatic resection and pancreaticoduodenectomy are of fundamental importance. After a failed attempt to replicate a previously described rat model for pancreatic fistula induction, we proceeded to distal pancreatic resection with splenectomy to provoke pancreatic leakage and generate a suitable animal model. METHODS: Distal pancreatic resection with splenectomy was performed in 40 rats. The rats were sacrificed on postoperative day (POD) 1, 2, 4, 6, 8, or 10, and the abdominal cavity was explored. Ascites probes were collected pre- and postoperatively for the detection of pancreas amylase and lipase. Tissue samples from the naïve pancreas (POD 0) and the postoperatively harvested remnant were evaluated histologically. The extent of necrosis was determined, and samples were examined for neutrophil infiltration. TUNEL staining served for the verification of necrosis in distinct cases. Immunohistochemistry of Ki67, von Willebrand factor, and CD68 was performed to evaluate proliferation, blood-vessel sprouting, and macrophage invasion. RESULTS: The rats showed no clinical symptoms or severe complications in the postoperative course up to 10 days. Abdominal exploration revealed adhesions in the upper abdomen, but no intra-abdominal fluid accumulations were found. Signs of inflammation and tissue damage were evident at the pancreatic resection margin on histological examination whereas the naïve pancreatic tissue was widely unaffected. Statistically significant differences were seen between the preoperative and postoperative extent of necrosis, the presence of neutrophil infiltrate, and levels of ascitic amylase and lipase. Immunohistochemical staining on Ki67, von Willebrand factor, and CD68 did not reveal any workable results on nonstatistical examination, and it was therefore not considered for further analyses. CONCLUSION: Creating a functional animal model of pancreatic fistula that reflects the clinical and pathophysiological impact of pancreatic leakage in humans has not been achieved. Our approach of left pancreatic resection recapitulated inflammation and tissue damage, early events in the development of fistulas, and it could be suitable for the experimental testing of novel targeting methods.


Assuntos
Pâncreas , Fístula Pancreática , Pancreatite , Amilases , Animais , Inflamação , Antígeno Ki-67 , Lipase , Necrose , Pâncreas/cirurgia , Fístula Pancreática/etiologia , Pancreaticoduodenectomia , Complicações Pós-Operatórias/etiologia , Ratos , Fatores de Risco , Esplenectomia/efeitos adversos , Fator de von Willebrand
10.
Materials (Basel) ; 14(4)2021 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-33668471

RESUMO

Additive manufacturing (AM) has become increasingly important over the last decade and the quality of the products generated with AM technology has strongly improved. The most common metals that are processed by AM techniques are steel, titanium (Ti) or aluminum (Al) alloys. However, the proportion of magnesium (Mg) in AM is still negligible, possibly due to the poor processability of Mg in comparison to other metals. Mg parts are usually produced by various casting processes and the experiences in additive manufacturing of Mg are still limited. To address this issue, a parameter screening was conducted in the present study with experiments designed to find the most influential process parameters. In a second step, these parameters were optimized in order to fabricate parts with the highest relative density. This experiment led to processing parameters with which specimens with relative densities above 99.9% could be created. These high-density specimens were then utilized in the fabrication of test pieces with several different geometries, in order to compare the material properties resulting from both the casting process and the powder bed fusion (PBF-LB) process. In this comparison, the compositions of the occurring phases and the alloys' microstructures as well as the mechanical properties were investigated. Typically, the microstructure of metal parts, produced by PBF-LB, consisted of much finer grains compared to as-cast parts. Consequently, the strength of Mg parts generated by PBF-LB could be further increased.

11.
Materials (Basel) ; 13(17)2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32854263

RESUMO

The European standard ISO 3690 regulates the measurement of diffusible hydrogen in arc-welded metal. It was designed for different welding methods performed in dry atmosphere (20% humidity). Some details of the standard are not applicable for wet underwater welding. The objective of this study was to extend the applicability of DIN EN ISO 3690:2018-12 to underwater wet-shielded metal arc welding (SMAW). Four different aspects regulated within the standard were accounted for: (1) sample dimensions and number of samples taken simultaneously; (2) time limitations defined by the standard regarding the welding and the cleaning process; (3) time, temperature, and method defined for analysis of the diffusible hydrogen content; (4) normalization of the hydrogen concentration measured. Underwater wet welding was performed using an automated, arc voltage-controlled welding machine. The results are discussed in light of standard DIN EN ISO 3690, and recommendations are provided for the analysis of diffusible hydrogen content upon underwater wet welding.

12.
J Mech Behav Biomed Mater ; 109: 103825, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32543398

RESUMO

Degradable bone substitutes made of magnesium alloys are an alternative to biological bone grafts. The main advantage is that they can be manufactured location- and patient-specific. To develop and scale appropriate implants using computational models, knowledge about the mechanical properties and especially the change in the properties during the degradation process is essential. Therefore, degraded open-pored implants were investigated using scanning electron microscope and nanoindentation to find their material composition and mechanical properties. Using both techniques the correlation of the material composition and the average modulus was determined. It could be shown that the average modulus of the degradation layer is distinctly lower than that of the base material. The local average modulus of degrading implant highly depends on the magnesium concentration and the accumulation of elements from the environment. A decrease in magnesium concentration leads to a decrease in the average modulus. Thus, the degrading implant had a lower stiffness than the initial structure.


Assuntos
Substitutos Ósseos , Magnésio , Ligas , Humanos , Teste de Materiais , Microscopia Eletrônica de Varredura , Próteses e Implantes
13.
PLoS One ; 15(6): e0234063, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32555589

RESUMO

Pathogenic mucormycetes induce diseases with considerable morbidity and mortality in immunocompromised patients. Virulence data comparing different Mucorales species and various underlying risk factors are limited. We therefore compared the pathogenesis of inhalative infection by Rhizopus (R.) arrhizus and Lichtheimia (L.) corymbifera in murine models for predominant risk factors for onset of infection. Mice with diabetes or treated with cyclophosphamide or cortisone acetate were challenged via the intranasal route with an isolate of R. arrhizus or L. corymbifera, respectively. Clinical, immunological and inflammation parameters as well as efficacy of posaconazole prophylaxis were monitored over 14 days. Whereas immunocompetent mice showed no clinical symptoms after mucormycete infection, mice treated with either cyclophosphamide (CP) or cortisone acetate (CA) were highly susceptible. Animals infected with the isolate of R. arrhizus showed prolonged survival and lower mortality, compared to those exposed to the L. corymbifera isolate. This lower virulence of R. arrhizus was risk factor-dependent, since diabetic mice died only after infection with Rhizopus, whereas all Lichtheimia-infected diabetic animals survived. Under posaconazole prophylaxis, both mucormycetes were able to establish breakthrough infections in CA- and CP-treated mice, but the course of infection was significantly delayed. Detailed analysis revealed that susceptibility of CA- and CP-treated mice could not be mimicked by exclusive lack or downmodulation of neutrophils, platelets or complement, but can be supposed to be the consequence of a broad immunosuppressive effect induced by the drugs. Both Lichtheimia corymbifera and Rhizopus arrhizus induce invasive mycoses in immunocompromised hosts after inhalative infection. Key parameters such as virulence and immunopathogenesis vary strongly according to fungal species and underlying risk group. Selected neutropenia is no sufficient risk factor for onset of inhalative mucormycosis.


Assuntos
Inalação , Mucorales/fisiologia , Mucormicose/imunologia , Rhizopus/fisiologia , Animais , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Mucormicose/prevenção & controle , Análise de Sobrevida , Triazóis/farmacologia
14.
J Biomed Mater Res B Appl Biomater ; 108(7): 2776-2788, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32170913

RESUMO

The magnesium alloy LAE442 emerged as a possible bioresorbable bone substitute over a decade ago. In the present study, using the investment casting process, scaffolds of the Magnesium (Mg) alloy LAE442 with two different and defined pore sizes, which had on average a diameter of 400 µm (p400) and 500 µm (p500), were investigated to evaluate degradation and osseointegration in comparison to a ß-TCP control group. Open-pored scaffolds were implanted in both greater trochanter of rabbits. Ten scaffolds per time group (6, 12, 24, and 36 weeks) and type were analyzed by clinical, radiographic and µ-CT examinations (2D and 3D). None of the scaffolds caused adverse reactions. LAE442 p400 and p500 developed moderate gas accumulation due to the Mg associated in vivo corrosion, which decreased from week 20 for both pore sizes. After 36 weeks, p400 and p500 showed volume decreases of 15.9 and 11.1%, respectively, with homogeneous degradation, whereas ß-TCP lost 74.6% of its initial volume. Compared to p400, osseointegration for p500 was significantly better at week 2 postsurgery due to more frequent bone-scaffold contacts, higher number of trabeculae and higher bone volume in the surrounding area. No further significant differences between the two pore sizes became apparent. However, p500 was close to the values of ß-TCP in terms of bone volume and trabecular number in the scaffold environment, suggesting better osseointegration for the larger pore size.


Assuntos
Ligas/química , Materiais Biocompatíveis/química , Substitutos Ósseos/química , Teste de Materiais , Osseointegração , Animais , Corrosão , Porosidade , Coelhos
15.
J Mech Behav Biomed Mater ; 101: 103411, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31546176

RESUMO

The development of degradable bone implants, in particular made of metal materials, is an emerging field. The advantage of degradable implants is that they do not have to be removed later. In order to be able to develop and scale appropriate implants for different applications, it is necessary to know the change in mechanical properties of the implant during the degradation process in general and at different locations. One area of bone implants are bone substitute materials. They are deployed when there is a defect in the bone which cannot be filled autonomously by the body. In this study, a numerical degradation model of magnesium-based bone substitute materials is developed using the finite element method. Computational models are being developed to reduce experimental animal research in future. Magnesium is a naturally occurring material which is needed to build enzymes in the body. Additionally, magnesium has a Young's modulus close to native bone, wherefore it is attractive for medical applications with bone contact. The simulation model is based on the assumption that the degradation is a diffusion-controlled process driven by the dissolution of magnesium. The model is adapted to a 3D open-pored structure made of the magnesium alloy LAE442. Previous studies showed that implants made of LAE442 lose stiffness without a volume reduction. To simulate the change in mechanical properties, a concentration-dependent Young's modulus is assumed. With this model the formation of the degradation layer is computable as well as the change in mechanical properties, as measured by the effective Young's modulus of the structure. The movement of the interface between the not-degraded and degraded material is modelled using the level set method.


Assuntos
Osso e Ossos , Magnésio/química , Modelos Teóricos , Próteses e Implantes , Difusão , Módulo de Elasticidade , Análise de Elementos Finitos , Porosidade
16.
Acta Biomater ; 94: 610-626, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31125727

RESUMO

Selective laser melting (SLM) has enabled the production of porous titanium structures with biological and mechanical properties that mimic bone for orthopedic applications. These porous structures have a reduced effective stiffness which leads to improved mechanotransduction between the implant and bone. Triply periodic minimal surfaces (TMPS), specifically the sheet-based gyroid structures, have improved compressive fatigue resistance due lack of stress concentrations. Sheet-based gyroid microarchitectures also have high surface area, permeability, and zero mean curvature. This study examines the effects of the gyroid microarchitectural design in parallel with SLM parameters on structure and function of as-built titanium alloy (Ti6Al4V ELI) scaffolds. Scaffold design was varied by varying unit cell size and wall thickness to produce scaffolds with porosity within the range of trabecular bone (50-90%). Manufacturer's default and refined laser parameters were used to examine the effect of input energy density on mechanical properties. Scaffolds exhibited a stretching-dominated deformation behavior under both compressive and tensile loading, and porosity dependent stiffness and strength. Internal void defects were observed within the walls of the gyroids structure, serving as sites for crack initiation leading to failure. Refinement of laser parameters resulted in increased compressive and tensile fatigue behavior, particularly for thicker walled gyroid microarchitectures, while thinner walls showed no significant change. The observed properties of as-built gyroid sheet microarchitectures indicates that these structures have potential for use in bone engineering applications. Furthermore, these results highlight the importance of parallel design and processing optimization for complex sheet-based porous structures produced via SLM. STATEMENT OF SIGNIFICANCE: Selective laser melting (SLM) is an additive manufacturing technology which produces complex porous scaffolds for orthopedic applications. Titanium alloy scaffolds with novel sheet-based gyroid microarchitectures were produced via SLM and evaluated for mechanical performance including fatigue behavior. Gyroid structures are function based topologies have been hypothesized to be promising for tissue engineering scaffolds due to the high surface area to volume ratio, zero mean curvature, and high permeability. This paper presents the effects of scaffold design and processing parameters in parallel, a novel study in the field on bone tissue scaffolds produced via additive manufacturing. Additionally, the comparison of compressive and tensile behavior of scaffolds presented is important in characterizing behavior and failure mechanisms of porous metals which undergo complex loading in orthopedic applications.


Assuntos
Substitutos Ósseos/química , Osso e Ossos/química , Alicerces Teciduais/química , Titânio/química , Ligas , Substitutos Ósseos/metabolismo , Osso Esponjoso/metabolismo , Força Compressiva , Módulo de Elasticidade , Lasers , Porosidade , Pressão , Estresse Mecânico , Relação Estrutura-Atividade , Propriedades de Superfície , Resistência à Tração , Engenharia Tecidual
17.
Mater Sci Eng C Mater Biol Appl ; 98: 1073-1086, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30812991

RESUMO

Large bone defects or fractures must be treated with an implant or transplant. Resorbable implants are attractive as these require only one surgery, whereas bone autografts, which can be cut off from the same person's hip, require more than one procedure. Moreover, porous structures promote the ingrowth of the patient's bone. Thus, the objective of the present study was to develop open-pored biodegradable implant structures with different pore sizes that provide for both adequate degradation behaviour and mechanical properties that match with those of bone. The magnesium alloys LAE442 and La2 were employed in this study, as these materials are known to feature good biocompatibility and mechanical properties close to bone. It was possible to cast magnesium sponges with different pore sizes using the alloy LAE442. However, with the MgLa2 alloy, only sponges with a minimum pore size of 0.5 mm could be produced. Overall, the sponges cast with the LAE442 alloy showed higher strength, even though the strengths of the dense parts were similar in both alloys tested. In terms of castability and mechanical behaviour, the LAE442 alloy turned out to be more favourable. In order to adapt the implant degradation behaviour to the bone ingrowth behaviour, coating of the magnesium sponges with calcium phosphate and polylactic acid was also investigated. Additionally, the different coatings were tested on their adhesive forces and influences to the in-vitro degradation behaviour.


Assuntos
Materiais Biocompatíveis/química , Osso e Ossos/metabolismo , Magnésio/química , Implantes Absorvíveis , Ligas/química , Transplante Ósseo/métodos , Fosfatos de Cálcio/química , Humanos , Teste de Materiais/métodos , Porosidade
18.
Materials (Basel) ; 12(24)2019 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-31888233

RESUMO

The present study is dedicated to the microstructure characterization of the as-cast high entropy intermetallics that undergo a martensitic transformation, which is associated with the shape memory effect. It is shown that the TiZrHfCoNiCu system exhibits strong dendritic liquation, which leads to the formation of martensite crystals inside the dendrites. In contrast, in the CoNiCuAlGaIn system the dendritic liquation allows the martensite crystals to form only in interdendritic regions. This phenomenon together with the peculiarities of chemical inhomogeneities formed upon crystallization of this novel multicomponent shape memory alloys systems will be analyzed and discussed.

19.
ACS Comb Sci ; 20(3): 137-150, 2018 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-29356502

RESUMO

Ti-Ta thin films exhibit properties that are of interest for applications as microactuators and as biomedical implants. A Ti-Ta thin film materials library was deposited at T = 25 °C by magnetron sputtering employing the combinatorial approach, which led to a compositional range of Ti87Ta13 to Ti14Ta86. Subsequent high-throughput characterization methods permitted a quick and comprehensive study of the crystallographic, microstructural, and morphological properties, which strongly depend on the chemical composition. SEM investigation revealed a columnar morphology having pyramidal, sharp tips with coarser columns in the Ti-rich and finer columns in the Ta-rich region. By grazing incidence X-ray diffraction four phases were identified, from Ta-lean to Ta-rich: ω phase, α″ martensite, ß phase, and a tetragonal Ta-rich phase (Ta(tetr)). The crystal structure and microstructure were analyzed by Rietveld refinement and clear trends could be determined as a function of Ta-content. The lattice correspondences between ß as the parent phase and α″ and ω as derivative phases were expressed in matrix form. The ß â‡Œ α″ phase transition shows a discontinuity at the composition where the martensitic transformation temperatures fall below room temperature (between 34 and 38 at. % Ta) rendering it first order and confirming its martensitic nature. A short study of the α″ martensite employing the Landau theory is included for a mathematical quantification of the spontaneous lattice strain at room temperature (ϵ̂max = 22.4(6) % for pure Ti). Martensitic properties of Ti-Ta are beneficial for the development of high-temperature actuators with actuation response at transformation temperatures higher than 100 °C.


Assuntos
Ligas/química , Técnicas de Química Combinatória/métodos , Bibliotecas de Moléculas Pequenas/química , Tantálio/química , Titânio/química , Materiais Biocompatíveis/química , Cristalografia/métodos , Ligas Dentárias/química , Teste de Materiais/métodos , Transição de Fase , Relação Estrutura-Atividade , Temperatura , Difração de Raios X/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...