Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Am Ceram Soc ; 106(2): 1490-1499, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36761689

RESUMO

Adlayers on C-plane (0001) and R-plane ( 1 1 ‒ 02 ) terminated surfaces of corundum phase aluminum oxide were synthesized by annealing mixtures of two oxide powders, aluminum oxide with an additive. Using high-angle annular dark field scanning transmission electron microscopy, the adsorbed layers were characterized, and image simulations aided interpretation of the results. The adlayers were pseudomorphic, one atomic layer thick and with a fractional site occupancy. Atomic positions of the adlayer atoms relaxed and changed relative to the bulk structure, where there is evidence that the magnitude of the relaxation is sensitive to the ionic radius of the adsorbate. The pseudomorphic adlayer structure formed for different elements including, but not limited to, the lanthanides (i.e., Ge, Ba and Ln = La, Ce, Pr, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm).

2.
Nanotechnology ; 30(8): 085703, 2019 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-30240366

RESUMO

Cerium oxide nanomaterials (nanoceria, CNMs) are receiving increased attention from the research community due to their unique chemical properties, most prominent of which is their ability to alternate between the Ce3+ and Ce4+ oxidation states. While many analytical techniques and methods have been employed to characterize the amounts of Ce3+ and Ce4+ present (Ce3+/Ce4+ ratio) within nanoceria materials, to-date no studies have used multiple complementary analytical tools (orthogonal analysis) with technique-independent oxidation state controls for quantitative determinations of the Ce3+/Ce4+ ratio. Here, we describe the development of analytical methods measuring the oxidation states of nanoceria analytes using technique-independent Ce3+ (CeAlO3:Ge) and Ce4+ (CeO2) control materials, with a particular focus on x-ray photoelectron spectroscopy (XPS) and electron energy loss spectroscopy (EELS) approaches. The developed methods were demonstrated in characterizing a suite of commercial nanoceria products, where the two techniques (XPS and EELS) were found to be in good agreement with respect to Ce3+/Ce4+ ratio. Potential sources of artifacts and discrepancies in the measurement results were also identified and discussed, alongside suggestions for interpreting oxidation state results using the different analytical techniques. The results should be applicable towards producing more consistent and reproducible oxidation state analyses of nanoceria materials.

3.
Materials (Basel) ; 9(11)2016 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-28774003

RESUMO

We report on the detection of electric field-induced second harmonic generation (EFISHG) from the anode interfaces of reduced and oxidized Fe-doped SrTiO3 (Fe:STO) single crystals. For the reduced crystal, we observe steady enhancements of the susceptibility components as the imposed dc-voltage increases. The enhancements are attributed to a field-stabilized electrostriction, leading to Fe:Ti-O bond stretching and bending in Fe:Ti-O6 octahedra. For the oxidized crystal, no obvious structural changes are observed below 16 kV/cm. Above 16 kV/cm, a sharp enhancement of the susceptibilities occurs due to local electrostrictive deformations in response to oxygen vacancy migrations away from the anode. Differences between the reduced and oxidized crystals are explained by their relative oxygen vacancy and free carrier concentrations which alter internal electric fields present at the Pt/Fe:STO interfaces. Our results show that the optical SHG technique is a powerful tool for detecting structural changes near perovskite-based oxide interfaces due to field-driven oxygen vacancy migration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA