Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2470, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38503754

RESUMO

Motivated by the recently discovered high-Tc superconductor La3Ni2O7, we comprehensively study this system using density functional theory and random phase approximation calculations. At low pressures, the Amam phase is stable, containing the Y2- mode distortion from the Fmmm phase, while the Fmmm phase is unstable. Because of small differences in enthalpy and a considerable Y2- mode amplitude, the two phases may coexist in the range between 10.6 and 14 GPa, beyond which the Fmmm phase dominates. In addition, the magnetic stripe-type spin order with wavevector (π, 0) was stable at the intermediate region. Pairing is induced in the s±-wave channel due to partial nesting between the M = (π, π) centered pockets and portions of the Fermi surface centered at the X = (π, 0) and Y = (0, π) points. This resembles results for iron-based superconductors but has a fundamental difference with iron pnictides and selenides. Moreover, our present efforts also suggest La3Ni2O7 is qualitatively different from infinite-layer nickelates and cuprate superconductors.

2.
Proc Natl Acad Sci U S A ; 121(3): e2311486121, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38207078

RESUMO

The ability to control the properties of twisted bilayer transition metal dichalcogenides in situ makes them an ideal platform for investigating the interplay of strong correlations and geometric frustration. Of particular interest are the low energy scales, which make it possible to experimentally access both temperature and magnetic fields that are of the order of the bandwidth or the correlation scale. In this manuscript, we analyze the moiré Hubbard model, believed to describe the low energy physics of an important subclass of the twisted bilayer compounds. We establish its magnetic and the metal-insulator phase diagram for the full range of magnetic fields up to the fully spin-polarized state. We find a rich phase diagram including fully and partially polarized insulating and metallic phases of which we determine the interplay of magnetic order, Zeeman-field, and metallicity, and make connection to recent experiments.

3.
Nat Commun ; 14(1): 2889, 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37210389

RESUMO

There is growing evidence that the hole-doped single-band Hubbard and t - J models do not have a superconducting ground state reflective of the high-temperature cuprate superconductors but instead have striped spin- and charge-ordered ground states. Nevertheless, it is proposed that these models may still provide an effective low-energy model for electron-doped materials. Here we study the finite temperature spin and charge correlations in the electron-doped Hubbard model using quantum Monte Carlo dynamical cluster approximation calculations and contrast their behavior with those found on the hole-doped side of the phase diagram. We find evidence for a charge modulation with both checkerboard and unidirectional components decoupled from any spin-density modulations. These correlations are inconsistent with a weak-coupling description based on Fermi surface nesting, and their doping dependence agrees qualitatively with resonant inelastic x-ray scattering measurements. Our results provide evidence that the single-band Hubbard model describes the electron-doped cuprates.

4.
Proc Natl Acad Sci U S A ; 119(7)2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35140180

RESUMO

The high-temperature superconducting cuprates are governed by intertwined spin, charge, and superconducting orders. While various state-of-the-art numerical methods have demonstrated that these phases also manifest themselves in doped Hubbard models, they differ on which is the actual ground state. Finite-cluster methods typically indicate that stripe order dominates, while embedded quantum-cluster methods, which access the thermodynamic limit by treating long-range correlations with a dynamical mean field, conclude that superconductivity does. Here, we report the observation of fluctuating spin and charge stripes in the doped single-band Hubbard model using a quantum Monte Carlo dynamical cluster approximation (DCA) method. By resolving both the fluctuating spin and charge orders using DCA, we demonstrate that they survive in the doped Hubbard model in the thermodynamic limit. This discovery also provides an opportunity to study the influence of fluctuating stripe correlations on the model's pairing correlations within a unified numerical framework. Using this approach, we also find evidence for pair-density-wave correlations whose strength is correlated with that of the stripes.

5.
Nat Commun ; 12(1): 3122, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34035254

RESUMO

In ultrathin films of FeSe grown on SrTiO3 (FeSe/STO), the superconducting transition temperature Tc is increased by almost an order of magnitude, raising questions on the pairing mechanism. As in other superconductors, antiferromagnetic spin fluctuations have been proposed to mediate SC making it essential to study the evolution of the spin dynamics of FeSe from the bulk to the ultrathin limit. Here, we investigate the spin excitations in bulk and monolayer FeSe/STO using resonant inelastic x-ray scattering (RIXS) and quantum Monte Carlo (QMC) calculations. Despite the absence of long-range magnetic order, bulk FeSe displays dispersive magnetic excitations reminiscent of other Fe-pnictides. Conversely, the spin excitations in FeSe/STO are gapped, dispersionless, and significantly hardened relative to its bulk counterpart. By comparing our RIXS results with simulations of a bilayer Hubbard model, we connect the evolution of the spin excitations to the Fermiology of the two systems revealing a remarkable reconfiguration of spin excitations in FeSe/STO, essential to understand the role of spin fluctuations in the pairing mechanism.

6.
Phys Rev Lett ; 119(26): 266802, 2017 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-29328725

RESUMO

The physics of doped Mott insulators is at the heart of some of the most exotic physical phenomena in materials research including insulator-metal transitions, colossal magnetoresistance, and high-temperature superconductivity in layered perovskite compounds. Advances in this field would greatly benefit from the availability of new material systems with a similar richness of physical phenomena but with fewer chemical and structural complications in comparison to oxides. Using scanning tunneling microscopy and spectroscopy, we show that such a system can be realized on a silicon platform. The adsorption of one-third monolayer of Sn atoms on a Si(111) surface produces a triangular surface lattice with half filled dangling bond orbitals. Modulation hole doping of these dangling bonds unveils clear hallmarks of Mott physics, such as spectral weight transfer and the formation of quasiparticle states at the Fermi level, well-defined Fermi contour segments, and a sharp singularity in the density of states. These observations are remarkably similar to those made in complex oxide materials, including high-temperature superconductors, but highly extraordinary within the realm of conventional sp-bonded semiconductor materials. It suggests that exotic quantum matter phases can be realized and engineered on silicon-based materials platforms.

7.
Sci Rep ; 6: 32078, 2016 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-27561327

RESUMO

Observations of robust superconductivity in some of the iron based superconductors in the vicinity of a Lifshitz point where a spin density wave instability is suppressed as the hole band drops below the Fermi energy raise questions for spin-fluctuation theories. Here we discuss spin-fluctuation pairing for a bilayer Hubbard model, which goes through such a Lifshitz transition. We find s± pairing with a transition temperature that peaks beyond the Lifshitz point and a gap function that has essentially the same magnitude but opposite sign on the incipient hole band as it does on the electron band that has a Fermi surface.

8.
Phys Rev Lett ; 116(24): 247001, 2016 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-27367401

RESUMO

We use neutron scattering to study spin excitations in single crystals of LiFe_{0.88}Co_{0.12}As, which is located near the boundary of the superconducting phase of LiFe_{1-x}Co_{x}As and exhibits non-Fermi-liquid behavior indicative of a quantum critical point. By comparing spin excitations of LiFe_{0.88}Co_{0.12}As with a combined density functional theory and dynamical mean field theory calculation, we conclude that wave-vector correlated low energy spin excitations are mostly from the d_{xy} orbitals, while high-energy spin excitations arise from the d_{yz} and d_{xz} orbitals. Unlike most iron pnictides, the strong orbital selective spin excitations in the LiFeAs family cannot be described by an anisotropic Heisenberg Hamiltonian. While the evolution of low-energy spin excitations of LiFe_{1-x}Co_{x}As is consistent with the electron-hole Fermi surface nesting conditions for the d_{xy} orbital, the reduced superconductivity in LiFe_{0.88}Co_{0.12}As suggests that Fermi surface nesting conditions for the d_{yz} and d_{xz} orbitals are also important for superconductivity in iron pnictides.

9.
Phys Rev Lett ; 116(16): 167001, 2016 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-27152819

RESUMO

Pair-density-wave superconductivity constitutes a novel electronic condensate proposed to be realized in certain unconventional superconductors. Establishing its potential existence is important for our fundamental understanding of superconductivity in correlated materials. Here we compute the dynamical magnetic susceptibility in the presence of a pair-density-wave ordered state and study its fingerprints on the spin-wave spectrum including the neutron resonance. In contrast to the standard case of d-wave superconductivity, we show that the pair-density-wave phase exhibits neither a spin gap nor a magnetic resonance peak, in agreement with a recent neutron scattering experiment on underdoped La_{1.905}Ba_{0.095}CuO_{4} [Z. Xu et al., Phys. Rev. Lett. 113, 177002 (2014)].

10.
Phys Rev Lett ; 101(15): 156401, 2008 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-18999620

RESUMO

The electronic properties of multilayers of strongly correlated models for cuprate superconductors are investigated using cluster dynamical mean-field techniques. We focus on combinations of underdoped and overdoped layers and find that the superconducting order parameter in the overdoped layers is enhanced by the proximity effect of the strong pairing scale originating from the underdoped layers. The enhanced order parameter can even exceed the maximum value in uniform systems. This behavior is well reproduced in slave-boson mean-field calculations which also find higher transition temperatures than in the uniform system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...