Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 218
Filtrar
5.
Cells ; 12(22)2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37998330

RESUMO

Metabolic disorders and diabetes (DM) impact more than five hundred million individuals throughout the world and are insidious in onset, chronic in nature, and yield significant disability and death. Current therapies that address nutritional status, weight management, and pharmacological options may delay disability but cannot alter disease course or functional organ loss, such as dementia and degeneration of systemic bodily functions. Underlying these challenges are the onset of aging disorders associated with increased lifespan, telomere dysfunction, and oxidative stress generation that lead to multi-system dysfunction. These significant hurdles point to the urgent need to address underlying disease mechanisms with innovative applications. New treatment strategies involve non-coding RNA pathways with microRNAs (miRNAs) and circular ribonucleic acids (circRNAs), Wnt signaling, and Wnt1 inducible signaling pathway protein 1 (WISP1) that are dependent upon programmed cell death pathways, cellular metabolic pathways with AMP-activated protein kinase (AMPK) and nicotinamide, and growth factor applications. Non-coding RNAs, Wnt signaling, and AMPK are cornerstone mechanisms for overseeing complex metabolic pathways that offer innovative treatment avenues for metabolic disease and DM but will necessitate continued appreciation of the ability of each of these cellular mechanisms to independently and in unison influence clinical outcome.


Assuntos
Diabetes Mellitus , Doenças Metabólicas , Humanos , Proteínas Quinases Ativadas por AMP/metabolismo , Via de Sinalização Wnt/genética , Diabetes Mellitus/metabolismo , Doenças Metabólicas/genética , Apoptose/fisiologia
6.
Front Immunol ; 14: 1273570, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38022638

RESUMO

Life expectancy is increasing throughout the world and coincides with a rise in non-communicable diseases (NCDs), especially for metabolic disease that includes diabetes mellitus (DM) and neurodegenerative disorders. The debilitating effects of metabolic disorders influence the entire body and significantly affect the nervous system impacting greater than one billion people with disability in the peripheral nervous system as well as with cognitive loss, now the seventh leading cause of death worldwide. Metabolic disorders, such as DM, and neurologic disease remain a significant challenge for the treatment and care of individuals since present therapies may limit symptoms but do not halt overall disease progression. These clinical challenges to address the interplay between metabolic and neurodegenerative disorders warrant innovative strategies that can focus upon the underlying mechanisms of aging-related disorders, oxidative stress, cell senescence, and cell death. Programmed cell death pathways that involve autophagy, apoptosis, ferroptosis, and pyroptosis can play a critical role in metabolic and neurodegenerative disorders and oversee processes that include insulin resistance, ß-cell function, mitochondrial integrity, reactive oxygen species release, and inflammatory cell activation. The silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), AMP activated protein kinase (AMPK), and Wnt1 inducible signaling pathway protein 1 (WISP1) are novel targets that can oversee programmed cell death pathways tied to ß-nicotinamide adenine dinucleotide (NAD+), nicotinamide, apolipoprotein E (APOE), severe acute respiratory syndrome (SARS-CoV-2) exposure with coronavirus disease 2019 (COVID-19), and trophic factors, such as erythropoietin (EPO). The pathways of programmed cell death, SIRT1, AMPK, and WISP1 offer exciting prospects for maintaining metabolic homeostasis and nervous system function that can be compromised during aging-related disorders and lead to cognitive impairment, but these pathways have dual roles in determining the ultimate fate of cells and organ systems that warrant thoughtful insight into complex autofeedback mechanisms.


Assuntos
Diabetes Mellitus , Doenças Metabólicas , Doenças Neurodegenerativas , Humanos , Sirtuína 1/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Transdução de Sinais/fisiologia , Estresse Oxidativo , Doenças Neurodegenerativas/metabolismo , Envelhecimento , Apoptose
8.
Clin Chim Acta ; 551: 117608, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37844678

RESUMO

OBJECTIVES: Neurofilament light chain (NfL) is an emerging biomarker of neurodegeneration disorders. Knowledge of the biological variation (BV) can facilitate proper interpretation between serial measurements. Here BV estimates for serum NfL (sNfL) are provided. METHODS: Serum samples were collected weekly from 24 apparently healthy subjects for 10 consecutive weeks and analyzed in duplicate using the Siemens Healthineers sNfL assay on the Atellica® IM Analyzer. Outlier detection, variance homogeneity analyses, and trend analysis were performed followed by CV-ANOVA to determine BV and analytical variation (CVA) estimates with 95%CI and the associated reference change values (RCV) and analytical performance specifications (APS). RESULTS: Despite observed differences in sNfL concentrations between males and females, BV estimates remained consistent across genders. Both within-subject BV (CVI) for males (10.7%, 95%CI; 9.2-12.6) and females (9.1%, 95%CI; 7.8-10.9) and between-subject BV (CVG) for males (26.1%, 95%CI; 18.0-45.6) and females (30.2%, 95%CI; 20.9-53.5) were comparable. An index of individuality value of 0.33 highlights significant individuality, indicating the potential efficacy of personalized reference intervals in patient monitoring. CONCLUSIONS: The established BV estimates for sNfL underscore its potential as a valuable biomarker for monitoring neurodegenerative diseases, offering a foundation for improved decision-making in clinical settings.


Assuntos
Filamentos Intermediários , Humanos , Masculino , Feminino , Voluntários Saudáveis , Valores de Referência , Biomarcadores , Análise de Variância
10.
EXCLI J ; 22: 690-715, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37593239

RESUMO

As a significant non-communicable disease, cardiovascular disease is the leading cause of death for both men and women, comprises almost twenty percent of deaths in most racial and ethnic groups, can affect greater than twenty-five million individuals worldwide over the age of twenty, and impacts global economies with far-reaching financial challenges. Multiple factors can affect the onset of cardiovascular disease that include high serum cholesterol levels, elevated blood pressure, tobacco consumption and secondhand smoke exposure, poor nutrition, physical inactivity, obesity, and concurrent diabetes mellitus. Yet, addressing any of these factors cannot completely eliminate the onset or progression of cardiovascular disorders. Novel strategies are necessary to target underlying cardiovascular disease mechanisms. The silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), a histone deacetylase, can limit cardiovascular injury, assist with stem cell development, oversee metabolic homeostasis through nicotinamide adenine dinucleotide (NAD+) pathways, foster trophic factor protection, and control cell senescence through the modulation of telomere function. Intimately tied to SIRT1 pathways are mammalian forkhead transcription factors (FoxOs) which can modulate cardiac disease to reduce oxidative stress, repair microcirculation disturbances, and reduce atherogenesis through pathways of autophagy, apoptosis, and ferroptosis. AMP activated protein kinase (AMPK) also is critical among these pathways for the oversight of cardiac cellular metabolism, insulin sensitivity, mitochondrial function, inflammation, and the susceptibility to viral infections such as severe acute respiratory syndrome coronavirus that can impact cardiovascular disease. Yet, the relationship among these pathways is both intricate and complex and requires detailed insight to successfully translate these pathways into clinical care for cardiovascular disorders.

11.
Bioengineering (Basel) ; 10(7)2023 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-37508898

RESUMO

Almost three million individuals suffer from multiple sclerosis (MS) throughout the world, a demyelinating disease in the nervous system with increased prevalence over the last five decades, and is now being recognized as one significant etiology of cognitive loss and dementia. Presently, disease modifying therapies can limit the rate of relapse and potentially reduce brain volume loss in patients with MS, but unfortunately cannot prevent disease progression or the onset of cognitive disability. Innovative strategies are therefore required to address areas of inflammation, immune cell activation, and cell survival that involve novel pathways of programmed cell death, mammalian forkhead transcription factors (FoxOs), the mechanistic target of rapamycin (mTOR), AMP activated protein kinase (AMPK), the silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), and associated pathways with the apolipoprotein E (APOE-ε4) gene and severe acute respiratory syndrome coronavirus (SARS-CoV-2). These pathways are intertwined at multiple levels and can involve metabolic oversight with cellular metabolism dependent upon nicotinamide adenine dinucleotide (NAD+). Insight into the mechanisms of these pathways can provide new avenues of discovery for the therapeutic treatment of dementia and loss in cognition that occurs during MS.

13.
Curr Neurovasc Res ; 20(3): 314-333, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37488757

RESUMO

Disorders of metabolism affect multiple systems throughout the body but may have the greatest impact on both central and peripheral nervous systems. Currently available treatments and behavior changes for disorders that include diabetes mellitus (DM) and nervous system diseases are limited and cannot reverse the disease burden. Greater access to healthcare and a longer lifespan have led to an increased prevalence of metabolic and neurodegenerative disorders. In light of these challenges, innovative studies into the underlying disease pathways offer new treatment perspectives for Alzheimer's Disease, Parkinson's Disease, and Huntington's Disease. Metabolic disorders are intimately tied to neurodegenerative diseases and can lead to debilitating outcomes, such as multi-nervous system disease, susceptibility to viral pathogens, and long-term cognitive disability. Novel strategies that can robustly address metabolic disease and neurodegenerative disorders involve a careful consideration of cellular metabolism, programmed cell death pathways, the mechanistic target of rapamycin (mTOR) and its associated pathways of mTOR Complex 1 (mTORC1), mTOR Complex 2 (mTORC2), AMP-activated protein kinase (AMPK), growth factor signaling, and underlying risk factors such as the apolipoprotein E (APOE-ε4) gene. Yet, these complex pathways necessitate comprehensive understanding to achieve clinical outcomes that target disease susceptibility, onset, and progression.


Assuntos
Doença de Alzheimer , Doença de Huntington , Doenças Metabólicas , Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Doença de Parkinson/complicações , Doença de Alzheimer/complicações , Doença de Huntington/complicações , Serina-Treonina Quinases TOR/metabolismo , Doenças Neurodegenerativas/metabolismo
15.
Biomolecules ; 13(5)2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37238686

RESUMO

It is estimated that, at minimum, 500 million individuals suffer from cellular metabolic dysfunction, such as diabetes mellitus (DM), throughout the world. Even more concerning is the knowledge that metabolic disease is intimately tied to neurodegenerative disorders, affecting both the central and peripheral nervous systems as well as leading to dementia, the seventh leading cause of death. New and innovative therapeutic strategies that address cellular metabolism, apoptosis, autophagy, and pyroptosis, the mechanistic target of rapamycin (mTOR), AMP activated protein kinase (AMPK), growth factor signaling with erythropoietin (EPO), and risk factors such as the apolipoprotein E (APOE-ε4) gene and coronavirus disease 2019 (COVID-19) can offer valuable insights for the clinical care and treatment of neurodegenerative disorders impacted by cellular metabolic disease. Critical insight into and modulation of these complex pathways are required since mTOR signaling pathways, such as AMPK activation, can improve memory retention in Alzheimer's disease (AD) and DM, promote healthy aging, facilitate clearance of ß-amyloid (Aß) and tau in the brain, and control inflammation, but also may lead to cognitive loss and long-COVID syndrome through mechanisms that can include oxidative stress, mitochondrial dysfunction, cytokine release, and APOE-ε4 if pathways such as autophagy and other mechanisms of programmed cell death are left unchecked.


Assuntos
Doença de Alzheimer , COVID-19 , Diabetes Mellitus , Doenças Metabólicas , Doenças Neurodegenerativas , Humanos , Proteínas Quinases Ativadas por AMP/metabolismo , Síndrome de COVID-19 Pós-Aguda , Serina-Treonina Quinases TOR/metabolismo , Doença de Alzheimer/metabolismo , Doenças Neurodegenerativas/metabolismo , Encéfalo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...