Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 930: 172861, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38685417

RESUMO

The mechanism of carboxymethylammonium chloride (CC) regulating cadmium (Cd) accumulation in rice was studied in field and hydroponic experiments. Field experiments showed that 0.2-1.2 mmol L-1 CC spraying effectively reduced Cd accumulation by 44 %-77 % in early rice grains and 39 %-78 % in late rice grains, significantly increased calcium (Ca) content and amino acids content in grains, as well as alleviated Cd-induced oxidative damage in leaves. Hydroponic experiments further verified the inhibition effect of CC on Cd accumulation. 1.2 mmol L-1 CC made the highest decrease of Cd content in shoots and roots of hydroponic seedlings by 45 % and 53 %, respectively. Exogenous CC significantly increased glutamate (Glu), glycine (Gly) and glutathione (GSH) content, and improved the activities of catalase (CAT) and superoxide dismutase (SOD) by 41-131 % and 11-121 % in shoots of hydroponic seedlings, respectively. Exogenous CC also increased the relative expression of OsGLR3.1-3.5 in the shoots and roots of hydroponic seedlings. The quantum computational chemistry was used to clarify that the Gly radical provided by CC could form various complexes with Cd through carboxyl oxygen atoms. These results showed that exogenous application of CC improved the tolerance to Cd by enhancing the antioxidant capacity; inhibited the absorption, transport and accumulation of Cd in rice by (1) promoting chelation, (2) increasing the GLRs activity through upregulating the content of Glu, Gly, as well as the expression of OsGLR3.1-3.5.


Assuntos
Cádmio , Oryza , Oryza/metabolismo , Oryza/genética , Cádmio/metabolismo , Poluentes do Solo/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Regulação da Expressão Gênica de Plantas
2.
Water Sci Technol ; 88(6): 1471-1483, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37768749

RESUMO

The degradation of a mixture of ibuprofen, naproxen, and diclofenac in various effluents by UVC/H2O2 or UVC/S2O82- was studied to assess the impact of the matrix composition and of the oxidant precursor on process efficiency. Experiments were carried out in a 20-L laboratory pilot (a scaled-down version of a full-scale pilot). In effluents collected during dry weather, the rural constructed wetland effluent allowed faster degradation than the urban conventional WWTP effluent, regardless of the nature of the targets or of the oxidant precursor. This was mainly attributed to a three-times higher chemical oxygen demand in the urban effluent, likely to quench the oxidative species. UV fluences to reach 90% degradation of the three compounds were 3,800 and 5,500 mJ cm-2 in the rural effluent, whereas they were 6,600 and 6,100 mJ cm-2 in the urban effluent with H2O2 and S2O82-, respectively. After a rainfall event, the rural effluent composition was not significantly affected compared to that of the urban effluent that underwent the dilution effect. Therefore, the stability of the rural effluent composition allowed comparable degradation efficiency, whereas the dilution effect led to a significant increase in the degradation rate constants in the urban effluent (up to four times higher).


Assuntos
Peróxido de Hidrogênio , Poluentes Químicos da Água , Peróxido de Hidrogênio/química , Águas Residuárias , Poluentes Químicos da Água/química , Raios Ultravioleta , Oxidantes
3.
Chemosphere ; 329: 138639, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37054842

RESUMO

The processes of Fe(III) activated persulfate (PS) and H2O2 modified by catechin (CAT) had been shown to be effective in degrading contaminants. In this study, the performance, mechanism, degradation pathways and products toxicity of PS (Fe(III)/PS/CAT) and H2O2 (Fe(III)/H2O2/CAT) systems were compared using atenolol (ATL) as a model contaminant. 91.0% of ATL degradation was reached after 60 min in H2O2 system which was much higher than that in PS system (52.4%) under the same experimental condition. CAT could react directly with H2O2 to produce small amounts of HO• and the degradation efficiency of ATL was proportional to CAT concentration in H2O2 system. However, the optimal CAT concentration was 5 µM in PS system. The performance of H2O2 system was more susceptible to pH than that of PS system. Quenching experiments were conducted indicating that SO4•- and HO• were produced in PS system while HO• and O2•- accounted for ATL degradation in H2O2 system. Seven pathways with nine byproducts and eight pathways with twelve byproducts were put forward in PS and H2O2 systems respectively. Toxicity experiments showed that the inhibition rates of luminescent bacteria were both decreased about 25% after 60 min reaction in two systems. Although the software simulation result showed few intermediate products of both systems were More toxic than ATL, but the amounts of them were 1-2 orders of magnitude lower than ATL. Moreover, the mineralization rates were 16.4% and 19.0% in PS and H2O2 systems respectively.


Assuntos
Catequina , Poluentes Químicos da Água , Compostos Férricos , Atenolol/toxicidade , Peróxido de Hidrogênio , Oxirredução , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise
4.
Water Res ; 232: 119683, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36739662

RESUMO

Surface complexation of arsenite (As(III)) on colloidal ferric hydroxide (CFH) plays an important role not only in the adsorptive immobilization of As(III) but also in the subsequent oxidation of As(III) to arsenate (As(V)) through light-induced ligand-to-metal charge transfer (LMCT) in water at near-neutral pH. However, the effects of natural organic matter (NOM), especially humic substances (HSs) and low molecular weight carboxylic acids (CAs), on the photochemistry of the CFH-As(III) system have not been sufficiently understood. In this work, the inhibition of photooxidation of As(III) in terms of the observed apparent rate constant (kobs) by six HSs (below 16 mg L-1) and seven CAs (below 2.5 mM) has been observed in water containing 66 µM Fe(III) and 5 µM As(III) at pH 7 under simulated solar irradiation consisting of UVA (λmax 365 nm) and UVB (λmax 313 nm) lights. Total inhibition factors (T) have been determined from the combined effect of light-screening factor (S) and competitive complexation factor (C), wherein both S and C varied with NOM concentration. S was obtained by determining the absorbance of NOM, and C was obtained by fitting modified Langmuir or Freundlich models to the amount of As(III) desorbed from CFH upon the addition of NOM. Statistical analysis between the experimental Texp and the calculated one according to Tcal = S × C showed that the Freundlich model (RMSE for HS 0.1609 and for CA 0.1771) was better than the Langmuir model and was statistically robust (QLOO2= 0.691 > 0.5). This work provided an estimation method for the effects of NOM on As(III) photooxidation in the presence of CFH as well as a deeper understanding of the transformation of arsenic species in sunlit water.


Assuntos
Arsenitos , Compostos Férricos , Compostos Férricos/química , Arsenitos/química , Água , Substâncias Húmicas , Ácidos Carboxílicos , Oxirredução
5.
Chemosphere ; 315: 137781, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36623604

RESUMO

The photocatalytic degradation behavior of aromatic micro-pollutants (AMPs) exhibits complexity and uncertainty, which mainly depends on the properties of different substituents on benzene. And with similar catalytic reaction substrates, the reaction rate constant could reveal the influence of different characteristics of molecular structure in a specific system. Therefore, the photooxidation pseudo first-order kinetic rate constants (kobs) of 30 AMPs were experimentally determined in Photo-GO system. A quantitative structure-activity relationship (QSAR) model for predicting the photooxidation reaction of AMPs has been developed by stepwise multiple linear regression (MLR) method, based on the lg kobs and representative molecule descriptors (20 in total) including physicochemical, quantum chemical and electrostatic descriptors. Afterwards, Radj2, QLOO2, and Qext2 were calculated as 0.870, 0.841, and 0.732 respectively, which exhibited the excellent goodness-of-fit, robustness, and predictability of the QSAR model, indicating its great prediction ability for photooxidation behavior of AMPs. Meanwhile, during the photooxidation process of AMPs with GO, the model revealed that the one-electron oxidation potential (Eox), molecular dipole moment (µ), and number of hydrogen bond donors (#HD) were the most important molecular structural parameters, which showed that the single electron transfer pathway and adsorption were as the significant steps. Additionally, the Hammett correlation showed that photooxidation of AMPs in Photo-GO system is of typical electrophilic reactions, which demonstrated that the electron-donating substituents could promote the photooxidation of AMPs. The QSAR model was constructed and evaluated to perform the prediction of AMPs reaction kinetics, which provided a guidance for the study of the mechanism and selective oxidation of AOPs photooxidation system based on GO.


Assuntos
Poluentes Ambientais , Grafite , Poluentes Químicos da Água , Água , Relação Quantitativa Estrutura-Atividade , Poluentes Químicos da Água/análise
6.
Photochem Photobiol Sci ; 22(3): 603-613, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36374373

RESUMO

Photo-Fenton processes activated by biodegradable Fe(III)-EDDS complexes have attracted huge attention from the scientific community, but the operative mechanism of the photo-activation of H2O2 in the presence of Fe(III)-EDDS has not been fully clarified yet. The application of the Fe(III)-EDDS complex in Fenton and photo-Fenton (mainly under UV-B light) processes, using 4-chlorophenol (4-CP) as a model pollutant was explored to give insights into the operative mechanism. Furthermore, the potential synergistic contribution of soybean peroxidase (SBP) was investigated, since it has been reported that upon irradiation of Fe(III)-EDDS the production of H2O2 can occur. SBP did not boost the 4-CP degradation, suggesting that the possibly produced H2O2 reacts immediately with the Fe(II) ion with a quick kinetics that does not allow the diffusion of H2O2 into the bulk of the solution (i.e., outside the solvent cage of the complex). So, a concerted mechanism in which the photochemically produced H2O2 and Fe(II) react inside the hydration sphere of the Fe(III)-EDDS complex is proposed.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Compostos Ferrosos , Peróxido de Hidrogênio/química , Ferro/química , Oxirredução , Peroxidase , Peroxidases , Glycine max
7.
Molecules ; 27(24)2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36558093

RESUMO

The preparation of anodic TiO2 nanotube layers has been performed using electrochemical anodization of Ti foil for 4 h at different voltages (from 0 V to 80 V). In addition, a TiO2 thin layer has been also prepared using the sol-gel method. All the photocatalysts have been characterized by XRD, SEM, and DRS to investigate the crystalline phase composition, the surface morphology, and the optical properties, respectively. The performance of the photocatalyst has been assessed in versatile photocatalytic reactions including the reduction of N2O gas and the oxidation of aqueous sulfamethoxazole. Due to their high specific surface area and excellent charge carriers transport, anodic TiO2 nanotube layers have exhibited the highest N2O conversion rate (up to 10% after 22 h) and the highest degradation extent of sulfamethoxazole (about 65% after 4 h) under UVA light. The degradation mechanism of sulfamethoxazole has been investigated by analyzing its transformation products by LC-MS and the predominant role of hydroxyl radicals has been confirmed. Finally, the efficiency of the anodic TiO2 nanotube layer has been tested in real wastewater reaching up to 45% of sulfamethoxazole degradation after 4 h.


Assuntos
Nanotubos , Águas Residuárias , Sulfametoxazol/química , Catálise , Nanotubos/química , Titânio/química
8.
Molecules ; 27(22)2022 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-36432145

RESUMO

The adsorption of antibiotics on minerals is an important process in their environment behavior. The adsorption behavior of antibiotics on iron-containing minerals and the effect of co-existing cations and anions were studied in this work. Magnetite, hematite, goethite and kaolin were selected as the representative minerals and characterized by SEM, XRD and BET. A total of eight antibiotics, including three quinolones, three sulfonamides and two mycins were chosen as the research targets. Results showed a higher adsorption amount of quinolones than that of sulfonamides and mycins on the surface of iron-containing minerals in most mineral systems. The adsorption isotherms of quinolones can be well fitted using the Freundlich models. The effects of five cations and five anions on the adsorption of quinolones were investigated, among which Mg2+, Ca2+, HCO3- and H2PO4- mainly showed significant inhibition on the adsorption, while the effects of K+, Na+, NH4+, Cl-, NO3- and SO42- showed less. Natural surface water samples were also collected and used as media to investigate the adsorption behavior of quinolones on iron-containing minerals. The buffering capacity of the natural water kept the reaction solution at circumneutral conditions, and the adsorption amount was mostly promoted in the goethite system (from 0.56~0.78 µmol/g to 0.52~1.43 µmol/g), but was inhibited in the other systems (magnetite: from 1.13~1.33 µmol/g to 0.45~0.76 µmol/g; hematite: from 0.52~0.65 µmol/g to 0.02~0.18 µmol/g; kaolin: from 1.98~1.99 µmol/g to 0.90~1.40 µmol/g). The results in this work help to further understand the transportation and fate of antibiotics in an aqueous environment.


Assuntos
Ferro , Quinolonas , Adsorção , Antibacterianos/farmacologia , Óxido Ferroso-Férrico , Caulim , Minerais , Cátions , Água , Sulfonamidas
9.
Molecules ; 27(7)2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35408645

RESUMO

The Fe(III)-S(IV) system used for advanced oxidation processes (AOPs) at acidic pH has just been proposed and demonstrated valid for very few contaminants in the last several years. In this work, we investigated the effect of ultraviolet A (UVA) radiation on the degradation efficiency of the Fe(III)/S(IV) system at near-neutral pH. Paracetamol (PARA) was selected as a model contaminant. The influencing factors, such as initial pH and Fe(III)/S(IV) molar ratio on chemical kinetics, and the mechanism of PARA degradation are investigated, with an emphasis on the determination of dominant oxidant species. Our results show that irradiation enhances the PARA degradation by accelerating the decrease of pH to acidic levels, and the optimal pH for the degradation of PARA in the Fe(III)/S(IV)/O2 system was around 4.0. At near-neutral pH, more than 60% of PARA was decomposed within 40 min under irradiation, whereas no significant degradation of PARA was observed using Fe(III)/S(IV) at pH 7.0 without irradiation. Mechanism investigation revealed that sulfate radical (SO4•‒) is the main oxidant species generated and responsible for the PARA degradation under these conditions. This finding may have promising implications in developing a new degradation process for dealing with wastewater at near-neutral pH by the Fe(III)/S(IV)/O2 system under UVA irradiation.


Assuntos
Acetaminofen , Poluentes Químicos da Água , Ferro , Oxidantes , Oxirredução , Sulfitos , Poluentes Químicos da Água/análise
10.
Sensors (Basel) ; 22(7)2022 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-35408347

RESUMO

This article presents a platform for environmental data named "Environmental Cloud for the Benefit of Agriculture" (CEBA). The CEBA should fill the gap of a regional institutional platform to share, search, store and visualize heterogeneous scientific data related to the environment and agricultural researches. One of the main features of this tool is its ease of use and the accessibility of all types of data. To answer the question of data description, a scientific consensus has been established around the qualification of data with at least the information "when" (time), "where" (geographical coordinates) and "what" (metadata). The development of an on-premise solution using the data lake concept to provide a cloud service for end-users with institutional authentication and for open data access has been completed. Compared to other platforms, CEBA fully supports the management of geographic coordinates at every stage of data management. A comprehensive JavaScript Objet Notation (JSON) architecture has been designed, among other things, to facilitate multi-stage data enrichment. Data from the wireless network are queried and accessed in near real-time, using a distributed JSON-based search engine.


Assuntos
Computação em Nuvem , Monitoramento Ambiental , Agricultura , Disseminação de Informação
11.
Sci Total Environ ; 829: 154642, 2022 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-35306063

RESUMO

Iron (Fe) plays a dual role in atmospheric chemistry: it is involved in chemical and photochemical reactivity and serves as a micronutrient for microorganisms that have recently been shown to produce strong organic ligands. These ligands control the reactivity, mobility, solubility and speciation of Fe, which have a potential impact on Fe bioavailability and cloud water oxidant capacity. In this work, the concentrations of Fe-binding ligands and the conditional stability constants were experimentally measured for the first time by Competitive Ligand Exchange-Adsorptive Cathodic Stripping Voltammetry (CLE-ACSV) technique in cloud water samples collected at puy de Dôme (France). The conditional stability constants, which indicate the strength of the Fe-ligand complexes, are higher than those considered until now in cloud chemistry (mainly Fe-oxalate). To understand the effect of Fe complexation on cloud water reactivity, we used the CLEPS cloud chemistry model. According to the model results, we found that Fe complexation impacts the hydroxyl radical formation rate: contrary to our expectations, Fe complexation by natural organic ligands led to an increase in hydroxyl radical production. These findings have important impacts on cloud chemistry and the global iron cycle.


Assuntos
Oxidantes , Água , Quelantes , Radical Hidroxila , Ferro/química , Ligantes
12.
Chemosphere ; 291(Pt 1): 132920, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34798115

RESUMO

This paper outlines the synthesis and application of a sustainable composite for the photo-Fenton-like degradation of caffeine, bisphenol A, and simazine. The phase, morphology, optical and magnetic properties of the samples were evaluated by different characterization techniques. The composite of Fe2.5Co0.3Zn0.2O4 and copper-chromium layered double hydroxide (CuCr-LDH) was determined to be the most favorable photocatalyst in the photo-Fenton-like process when compared with Fe3O4, Fe2.5Co0.3Zn0.2O4, CuCr-LDH, and Fe3O4/CuCr-LDH composite. Studying the efficiency of the photo-Fenton-like degradation process in the presence of the Fe2.5Co0.3Zn0.2O4/CuCr-LDH composite revealed a degradation rate constant of caffeine twice more than the sum of those obtained for the individual processes. This ascribes to the synergistic effect by which the photo-generated electron-hole from the catalyst and the efficient reduction of Fe3+, Cu2+, etc. during the photo-Fenton-like reaction is accelerated. Moreover, under the optimal condition and after 120 min of heterogenous photo-Fenton-like process at natural pH, > 90% of pollutants mixture was decomposed. The experiments fulfilled in near-real conditions demonstrated I) the high stability and magnetically recoverability of the photocatalyst and II) the proper degradation performance of the applied heterogenous photo-Fenton-process in the removal of pollutant mixture in different water bodies and in the presence of chloride and bicarbonate ions.


Assuntos
Simazina , Águas Residuárias , Compostos Benzidrílicos , Cafeína , Cromo , Cobre , Peróxido de Hidrogênio , Hidróxidos , Fenóis , Água , Zinco
13.
Chemosphere ; 289: 133127, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34864008

RESUMO

In this work, the photo reactivity of ferric oxalate (Fe(III)-Ox) complex in atmospheric particles was investigated. Raman spectroscopy was used to explore the mechanism and kinetics of Fe(III)-Ox photolysis occurring at the aqueous/gas interface, inside the droplet and in bulk solution. Ferrous carbonate (FeCO3) was detected indicating that carbonate ion (CO32-) formed inside the droplets would compete with oxalate ligands for iron complexation. A higher concentration of photoproduct Fe(II)-Ox was observed at the surface and inside of the droplets than in bulk solution. In particular, Fe(III)-Ox on the droplet surface was quickly reduced with light and Fe(II)-Ox concentration gradually decreased with irradiation time. The evolution of Fe(II)-Ox concentration was similar inside the droplet and in bulk solution with a trend of first increasing and then gradually decreasing during irradiation time. Although FeCO3 would hinder Fenton intermediate reaction, the photolysis rate of Fe(III)-Ox in droplets was almost two orders of magnitude times faster than that observed during bulk experiment. In general, the photolysis mechanism and kinetics of Fe(III)-Ox in aqueous/air interface, inside of droplet and bulk solution were distinct, and the production of oxide species from the atmospheric Fe(III)-Ox droplets was underestimated.


Assuntos
Compostos Férricos , Ácido Oxálico , Compostos Ferrosos , Ferro , Fotólise
14.
Molecules ; 26(19)2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34641291

RESUMO

The key role of trivalent manganese (Mn(III)) species in promoting sulfate radical-based advanced oxidation processes (SR-AOPs) has recently attracted increasing attention. This review provides a comprehensive summary of Mn(III) (oxyhydr)oxide-based catalysts used to activate peroxymonosulfate (PMS) and peroxydisulfate (PDS) in water. The crystal structures of different Mn(III) (oxyhydr)oxides (such as α-Mn2O3, γ-MnOOH, and Mn3O4) are first introduced. Then the impact of the catalyst structure and composition on the activation mechanisms are discussed, as well as the effects of solution pH and inorganic ions. In the Mn(III) (oxyhydr)oxide activated SR-AOPs systems, the activation mechanisms of PMS and PDS are different. For example, both radical (such as sulfate and hydroxyl radical) and non-radical (singlet oxygen) were generated by Mn(III) (oxyhydr)oxide activated PMS. In comparison, the activation of PDS by α-Mn2O3 and γ-MnOOH preferred to form the singlet oxygen and catalyst surface activated complex to remove the organic pollutants. Finally, research gaps are discussed to suggest future directions in context of applying radical-based advanced oxidation in wastewater treatment processes.

15.
Environ Sci Process Impacts ; 23(9): 1351-1361, 2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34350930

RESUMO

Despite the widespread presence of hydrogen peroxide (H2O2) in surface water and groundwater systems, little is known about the impact of environmental levels of H2O2 on the redox activity of minerals. Here we demonstrate that environmental concentrations of H2O2 can alter the reactivity of birnessite-type manganese oxide, an earth-abundant functional material, and decrease its oxidative activity in natural systems across a wide range of pH values (4-8). The H2O2-induced reductive dissolution generates Mn(II) that will re-bind to MnO2 surfaces, thereby affecting the surface charge of MnO2. Competition of Bisphenol A (BPA), used as a target compound here, and Mn(II) to interact with reactive surface sites may cause suppression of the oxidative ability of MnO2. This suppressive effect becomes more effective in the presence of oxyanions such as phosphate or silicate at concentrations comparable to those encountered in natural waters. Unlike nitrate, adsorption of phosphate or silicate onto birnessite increased in the presence of Mn(II) added or generated through H2O2-induced reduction of MnO2. This suggests that naturally occurring anions and H2O2 may have synergetic effects on the reactivity of birnessite-type manganese oxide at a range of environmentally relevant H2O2 amounts. As layered structure manganese oxides play a key role in the global carbon cycle as well as pollutant dynamics, the impact of environmental levels of hydrogen peroxide (H2O2/MnO2 molar ratio ≤ 0.3) should be considered in environmental fate and transport models.


Assuntos
Compostos de Manganês , Óxidos , Adsorção , Peróxido de Hidrogênio , Oxirredução
16.
Environ Pollut ; 288: 117728, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34247005

RESUMO

In this paper, the degradation of three endocrine-disrupting chemicals (EDCs): bisphenol A (BPA), 17ß-estradiol (E2) and 17α-ethinylestradiol (EE2) by manganite (γ-MnOOH) activated peroxymonosulfate (PMS) was investigated. Preliminary optimisation experiments showed that complete degradation of the three EDCs was achieved after 30 min of reaction using 0.1 g L-1 of γ-MnOOH and 2 mM of PMS. The degradation rate constants were determined to be 0.20, 0.22 and 0.15 min-1 for BPA, E2 and EE2, respectively. Combining radical scavenging approaches, Electron paramagnetic resonance (EPR) and X-ray photoelectron spectroscopy (XPS) analyses, we revealed for the first time that about 40% of EDCs degradation can be attributed to heterogeneous electron transfer reaction involving freshly generated Mn(IV), and 60% to sulfate radical degradation pathway. The influence of various inorganic ions on the γ-MnOOH/PMS system indicated that removal efficiency was slightly affected by chloride and carbonate ions, while nitrate and nitrite ions had negligible impacts. The application of γ-MnOOH/PMS system in real sewage treatment plant water (STPW) showed that degradation rate constants of EDCs decreased to 0.035-0.048 min-1 and complete degradation of the three EDCs after 45 min. This study provides new insights into the reactivity of combined γ-MnOOH and PMS, and opens new ways for the application of Mn-bearing species in wastewater treatment technologies.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Estrogênios , Peróxidos , Esgotos , Eliminação de Resíduos Líquidos , Água , Poluentes Químicos da Água/análise
17.
Molecules ; 26(4)2021 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-33670050

RESUMO

Desulfurized gypsum (DG) as a soil modifier imparts it with bulk solid sulfite. The Fe(III)-sulfite process in the liquid phase has shown great potential for the rapid removal of As(III), but the performance and mechanism of this process using DG as a sulfite source in aqueous solution remains unclear. In this work, employing solid CaSO3 as a source of SO32-, we have studied the effects of different conditions (e.g., pH, Fe dosage, sulfite dosage) on As(III) oxidation in the Fe(III)-CaSO3 system. The results show that 72.1% of As(III) was removed from solution by centrifugal treatment for 60 min at near-neutral pH. Quenching experiments have indicated that oxidation efficiencies of As(III) are due at 67.5% to HO•, 17.5% to SO5•- and 15% to SO4•-. This finding may have promising implications in developing a new cost-effective technology for the treatment of arsenic-containing water using DG.


Assuntos
Arsênio/química , Cálcio/química , Ferro/química , Sulfitos/química , Poluentes Químicos da Água/química , Água/química , Arsênio/isolamento & purificação , Oxirredução , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água
18.
Chemosphere ; 270: 129791, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33556815

RESUMO

Enrofloxacin (ENR) belongs to the fluoroquinolone (FQ) antibiotics family, which are contaminants of emerging concern frequently found in effluents. Although many works studying photo-Fenton process for FQ degradation have been reported, there are no reports analysing in deep the effect of iron complexation, as well as other metals, towards FQs' photolysis, which, evidently, also contributes in the overall degradation of the pollutant. Therefore, in this work, we report a comparative study between the photochemical fate of ENR and its complex with Fe(III) under simulated sunlight irradiation. In addition, the effect of dissolved oxygen, self-sensitization process, and H2O2 addition on the studied photochemical systems are also investigated. Results indicate that, for free and iron-complexed ENR, singlet oxygen (1O2) is generated from the interaction of its triplet state with ground state oxygen. Half-life time (t1/2) of ENR under sun simulated conditions is estimated to be around 22 min, while complexation with iron enhances its photostability, leading to a t1/2 of 2.1 h. Such finding indicates that at least the presence of iron, might notably increase the residence time of these pollutants in the environment. Eventually, only with the addition of H2O2, the FQ-iron complex is efficiently degraded due to photo-Fenton process even at circumneutral pH values due to the high stability of the formed complex. Finally, after LC/FT-ICR MS analysis, 39 photoproducts are detected, of which the 14 most abundant ones are identified. Results indicate that photoproducts formation is pH and iron dependent.


Assuntos
Ferro , Poluentes Químicos da Água , Enrofloxacina , Peróxido de Hidrogênio , Fotólise
19.
Chemosphere ; 263: 127996, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33297035

RESUMO

In this work, the decomposition of phenanthrene (PHE) in mimic and real soil washing (SW) effluents was investigated using UVB light assisted activation of hydrogen peroxide (H2O2) and peroxydisulfate (PDS) oxidation processes. The impact of oxidant concentration, initial pH, and coexisting inorganic anions (Cl-, HCO3- and NO3-) on PHE removal was evaluated. PHE degradation efficiency under UVB irradiation followed the order of UVB/PDS > UVB/H2O2 > UVB. The increase of PHE decomposition efficiency was observed with increasing oxidant dose in the range of 2-30 mM upon the two processes. It was found Cl- played different roles in the two activation systems depending on the solution pH and Cl- concentration. The influence of HCO3- on PHE elimination was negligible in the UVB/PDS process, while an inhibitory effect was observed in the UVB/H2O2 system. Nitrate inhibited the PHE decay in both UVB/H2O2 and UVB/PDS processes at the investigated pH 3.3, 7.1 and 8.6. Finally, the application of the two activation processes to the treatment of real SW effluents indicated that up to 85.0% of PHE degradation could be reached under 6 h UVB irradiation with PDS, indicating UVB/PDS process is a promising alternative for SW effluent treatment.


Assuntos
Fenantrenos , Poluentes Químicos da Água , Peróxido de Hidrogênio , Oxirredução , Solo , Raios Ultravioleta , Poluentes Químicos da Água/análise
20.
Chemosphere ; 263: 128142, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33297130

RESUMO

Iron species have essential influence on the environmental/geochemical behaviors of arsenic species in water and soil. Colloidal ferric hydroxide (CFH) induces photooxidation of arsenite (As(III)) to arsenate (As(V)) in water at neutral pH through surface complexation and ligand-to-metal charge transfer (LMCT). However, the effect of the co-existing natural organic matter (NOM) on the complexation-photolysis in this process has remained unclear. In the present work, the photooxidation of As(III) induced by CFH was investigated in the presence of various carboxylic acids and polyphenols as simple model compounds of NOM. Two different light sources of ultraviolet A (UVA) (λmax = 365 nm) and ultraviolet B (UVB) (λmax = 313 nm) were used for photooxidation treatment of the experimental ternary system and the control binary system respectively. The obtained results demonstrated that all investigated NOM inhibited the photooxidation of As(III) in the As(III)/CFH system at pH 7. Moreover, the correlation analysis between the pseudo-first order rate constant kobs and various property parameters of NOM showed that the stable constant for the complexation between Fe(III) and NOM (logKFe-NOM) as well as the molecular weight of NOM and the percentages of total acidity of NOM exhibited significant correlations. A simple quantitative structure-activity relationship (QSAR) model was established between kobs and these three parameters utilizing a multiple linear regression method, which can be employed to estimate the photooxidation efficiency of As(III) in the presence of ferric iron and NOM. Thus, the present work contributes to the understanding of the environmental interactions between NOM and iron.


Assuntos
Arsenitos , Ferro , Ácidos Carboxílicos , Compostos Férricos , Fenóis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...