Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Virol ; 96(6): e29690, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38804180

RESUMO

Autophagy is a degradational pathway with pivotal roles in cellular homeostasis and survival, including protection of neurons in the central nervous system (CNS). The significance of autophagy as antiviral defense mechanism is recognized and some viruses hijack and modulate this process to their advantage in certain cell types. Here, we present data demonstrating that the human neurotropic herpesvirus varicella zoster virus (VZV) induces autophagy in human SH-SY5Y neuronal cells, in which the pathway exerts antiviral activity. Productively VZV-infected SH-SY5Y cells showed increased LC3-I-LC3-II conversion as well as co-localization of the viral glycoprotein E and the autophagy receptor p62. The activation of autophagy was dependent on a functional viral genome. Interestingly, inducers of autophagy reduced viral transcription, whereas inhibition of autophagy increased viral transcript expression. Finally, the genotype of patients with severe ocular and brain VZV infection were analyzed to identify potential autophagy-associated inborn errors of immunity. Two patients expressing genetic variants in the autophagy genes ULK1 and MAP1LC3B2, respectively, were identified. Notably, cells of both patients showed reduced autophagy, alongside enhanced viral replication and death of VZV-infected cells. In conclusion, these results demonstrate a neuro-protective role for autophagy in the context of VZV infection and suggest that failure to mount an autophagy response is a potential predisposing factor for development of severe VZV disease.


Assuntos
Autofagia , Herpesvirus Humano 3 , Neurônios , Humanos , Herpesvirus Humano 3/fisiologia , Herpesvirus Humano 3/patogenicidade , Neurônios/virologia , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Replicação Viral , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Infecção pelo Vírus da Varicela-Zoster/virologia , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Linhagem Celular , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Interações Hospedeiro-Patógeno
2.
Nat Commun ; 14(1): 7871, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38052784

RESUMO

Current differentiation protocols for generating mesencephalic dopaminergic (mesDA) neurons from human pluripotent stem cells result in grafts containing only a small proportion of mesDA neurons when transplanted in vivo. In this study, we develop lineage-restricted undifferentiated stem cells (LR-USCs) from pluripotent stem cells, which enhances their potential for differentiating into caudal midbrain floor plate progenitors and mesDA neurons. Using a ventral midbrain protocol, 69% of LR-USCs become bona fide caudal midbrain floor plate progenitors, compared to only 25% of human embryonic stem cells (hESCs). Importantly, LR-USCs generate significantly more mesDA neurons under midbrain and hindbrain conditions in vitro and in vivo. We demonstrate that midbrain-patterned LR-USC progenitors transplanted into 6-hydroxydopamine-lesioned rats restore function in a clinically relevant non-pharmacological behavioral test, whereas midbrain-patterned hESC-derived progenitors do not. This strategy demonstrates how lineage restriction can prevent the development of undesirable lineages and enhance the conditions necessary for mesDA neuron generation.


Assuntos
Neurônios Dopaminérgicos , Células-Tronco Pluripotentes , Humanos , Ratos , Animais , Neurônios Dopaminérgicos/metabolismo , Fatores de Transcrição/metabolismo , Diferenciação Celular/fisiologia , Mesencéfalo , Células-Tronco Pluripotentes/metabolismo
3.
Mol Neurobiol ; 60(6): 3239-3260, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36840844

RESUMO

Circular RNAs (circRNAs) are key regulators of cellular processes, are abundant in the nervous system, and have putative regulatory roles during neural differentiation. However, the knowledge about circRNA functions in brain development is limited. Here, using RNA-sequencing, we show that circRNA levels increased substantially over the course of differentiation of human embryonic stem cells into rostral and caudal neural progenitor cells (NPCs), including three of the most abundant circRNAs, ciRS-7, circRMST, and circFAT3. Knockdown of circFAT3 during early neural differentiation resulted in minor transcriptional alterations in bulk RNA analysis. However, single-cell transcriptomics of 30 and 90 days differentiated cerebral organoids deficient in circFAT3 showed a loss of telencephalic radial glial cells and mature cortical neurons, respectively. Furthermore, non-telencephalic NPCs in cerebral organoids showed changes in the expression of genes involved in neural differentiation and migration, including FAT4, ERBB4, UNC5C, and DCC. In vivo depletion of circFat3 in mouse prefrontal cortex using in utero electroporation led to alterations in the positioning of the electroporated cells within the neocortex. Overall, these findings suggest a conserved role for circFAT3 in neural development involving the formation of anterior cell types, neuronal differentiation, or migration.


Assuntos
Neocórtex , Células-Tronco Neurais , Camundongos , Animais , Humanos , RNA Circular/genética , Diferenciação Celular/genética , Neurogênese/genética , Fator de Crescimento Epidérmico , Caderinas
4.
Stem Cell Res ; 48: 101945, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32791483

RESUMO

The differentiation of patient-specific induced pluripotent stem cells (iPSCs) into specific neuronal subtypes has been exploited as an approach for modeling a variety of neurological disorders. However, achieving a highly pure population of neurons is challenging when using directed differentiation methods, especially for neuronal subtypes generated by complex and protracted protocols. In this study, we efficiently produced highly pure populations of regionally specified CNS neurons by using a modified NGN2-Puromycin direct conversion protocol. The protocol is amenable across a range of iPSC lines, with more than 95% of cells at day 21 positive for the neuronal marker MAP2. We found that conversion from pluripotent stem cells resulted in neurons from the central and peripheral nervous system; however, by incorporating a short CNS patterning step, we eliminated these peripheral neurons. Furthermore, we used the patterning step to control the rostral-caudal identity. This approach of sequential patterning and conversion produced pure populations of forebrain neurons, when patterned with SMAD inhibitors. Additionally, when SMAD inhibitors and WNT agonists were applied, the approach produced anterior hindbrain excitatory neurons and resulted in a neuronal population containing VSX2/SHOX2 V2a interneurons. Overall, this sequential patterning and conversion protocol can be used for the production of a variety of CNS excitatory neurons from patient-derived iPSCs, and is a highly versatile system for investigating early disease events for a range of neurological disorders including Alzheimer's disease, motor neurons disease and spinal cord injury.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Diferenciação Celular , Humanos , Neurônios
5.
Stem Cell Res ; 45: 101781, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32305865

RESUMO

We generated an induced pluripotent stem cell (iPSC) line from fibroblasts of a clinically diagnosed 70 year old female Parkinson's disease (PD) patient heterozygous for a pathogenic missense variant (p.G2019S; c. 6055 G > A) in the leucine-rich repeat kinase 2 (LRRK2) gene by using non-integrating Sendai viruses. The DANi-011A iPSC line has a normal karyotype and is free from Sendai viruses. The expression of pluripotent markers in the iPSC line was confirmed by immunofluorescent staining, and we confirmed its ability to differentiate into the three germ layers. The DANi-011A iPSC line can be used for modeling PD and as a drug-screening platform.


Assuntos
Células-Tronco Pluripotentes Induzidas , Doença de Parkinson , Idoso , Linhagem Celular , Feminino , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Mutação , Doença de Parkinson/genética
6.
Stem Cell Res ; 42: 101657, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31786474

RESUMO

We generated eight induced pluripotent stem cell (iPSC) lines from Parkinson's disease (PD) patients with different familial mutations using non-integrating episomal plasmids. All iPSC lines have a normal karyotype, express pluripotent genes including POU5F1, NANOG, and show alkaline phosphatase activity, as well as the ability to differentiate into all three germ layers. These PD iPSC lines can be used for disease modeling to identify PD mechanisms and for the development or stratification of new drugs.


Assuntos
Células-Tronco Pluripotentes Induzidas/metabolismo , Doença de Parkinson/genética , Adulto , Linhagem Celular , Humanos , Pessoa de Meia-Idade , Mutação , Doença de Parkinson/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...