Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(32): 17700-17709, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37527512

RESUMO

In photoelectrochemical cells (PECs) the photon-to-current conversion efficiency is often governed by carrier transport. Most metal oxides used in PECs exhibit thermally activated transport due to charge localization via the formation of polarons or the interaction with defects. This impacts catalysis by restricting the charge accumulation and extraction. To overcome this transport bottleneck nanostructuring, selective doping and photothermal treatments have been employed. Here we demonstrate an alternative approach capable of directly activating localized carriers in bismuth vanadate (BiVO4). We show that IR photons can optically excite localized charges, modulate their kinetics, and enhance the PEC current. Moreover, we track carriers bound to oxygen vacancies and expose their ∼10 ns charge localization, followed by ∼60 µs transport-assisted trapping. Critically, we demonstrate that localization is strongly dependent on the electric field within the device. While optical modulation has still a limited impact on overall PEC performance, we argue it offers a path to control devices on demand and uncover defect-related photophysics.

2.
Nat Commun ; 13(1): 4949, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-35999214

RESUMO

Fundamental mechanisms underlying exciton formation in organic semiconductors are complex and elusive as it occurs on ultrashort sub-100-fs timescales. Some fundamental aspects of this process, such as the evolution of exciton binding energy, have not been resolved in time experimentally. Here, we apply a combination of sub-10-fs Pump-Push-Photocurrent, Pump-Push-Photoluminescence, and Pump-Probe spectroscopies to polyfluorene devices to track the ultrafast formation of excitons. While Pump-Probe is sensitive to the total concentration of excited states, Pump-Push-Photocurrent and Pump-Push-Photoluminescence are sensitive to bound states only, providing access to exciton binding dynamics. We find that excitons created by near-absorption-edge photons are intrinsically bound states, or become such within 10 fs after excitation. Meanwhile, excitons with a modest >0.3 eV excess energy can dissociate spontaneously within 50 fs before acquiring bound character. These conclusions are supported by excited-state molecular dynamics simulations and a global kinetic model which quantitatively reproduce experimental data.

3.
J Phys Chem Lett ; 12(36): 8732-8739, 2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34478291

RESUMO

Hot carriers in metal-halide perovskites (MHPs) present a foundation for understanding carrier-phonon coupling in the materials as well as the prospective development of high-performance hot carrier photovoltaics. While the carrier population dynamics during cooling have been scrutinized, the evolution of the hot carrier properties, namely mobility, remains largely unexplored. Here we introduce novel ultrafast visible pump-infrared push-terahertz probe spectroscopy to monitor the real-time conductivity dynamics of cooling carriers in methylammonium lead iodide. We find a decrease in mobility upon optically re-exciting the carriers, as expected for band transport. Surprisingly, the conductivity recovery is incommensurate with the hot carrier population dynamics measured by infrared probe and exhibits a negligible dependence on the hot carrier density. Our results reveal the importance of localized lattice heating toward the hot carrier mobility. This collective polaron-lattice phenomenon may contribute to the unusual photophysics of MHPs and should be accounted for in hot carrier devices.

4.
Nano Lett ; 20(4): 2271-2278, 2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32142303

RESUMO

Carrier cooling is of widespread interest in the field of semiconductor science. It is linked to carrier-carrier and carrier-phonon coupling and has profound implications for the photovoltaic performance of materials. Recent transient optical studies have shown that a high carrier density in lead-halide perovskites (LHPs) can reduce the cooling rate through a "phonon bottleneck". However, the role of carrier-carrier interactions, and the material properties that control cooling in LHPs, is still disputed. To address these factors, we utilize ultrafast "pump-push-probe" spectroscopy on LHP nanocrystal (NC) films. We find that the addition of cold carriers to LHP NCs increases the cooling rate, competing with the phonon bottleneck. By comparing different NCs and bulk samples, we deduce that the cooling behavior is intrinsic to the LHP composition and independent of the NC size or surface. This can be contrasted with other colloidal nanomaterials, where confinement and trapping considerably influence the cooling dynamics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA