Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Access Microbiol ; 6(2)2024.
Artigo em Inglês | MEDLINE | ID: mdl-38482364

RESUMO

The menace of antimicrobial resistance affecting public health is rising globally. Many pathogenic bacteria use mechanisms such as mutations and biofilm formation, significantly reducing the efficacy of antimicrobial agents. In this cross-sectional study, we aimed to determine the prevalence of selected extended-spectrum ß-lactamase (ESßL) genes and analyse the biofilm formation abilities of the isolated bacteria causing urinary tract infection among adult patients seeking Medicare at Kiambu Level 5 Hospital, Kenya. The double-disc synergy test was used for phenotypic identification of ESßL-producing isolates, while microtitre plate assays with some modifications were used for the biofilm formation test. Ten isolates were bioassayed for ESßL genes out of 57 bacterial isolates obtained from urine samples. This study found the bla TEM genes to be the most prevalent ESßL type [10/10 (100 %)], followed by blaOXA and blaSHV genes at 4/10 (40 %) and 3/10 (30 %), respectively. In addition, co-carriage of blaTEM and blaSHV was 50 % lower than that of blaTEM+bla OXA genes at 66.7 % among Escherichia coli isolates studied. Biofilm formation was positive in 36/57 (63.2 %) of the isolates tested, with most being Gram-negative [25/36 (69.4 %)]. Escherichia coli [15/36 (41.7 %)], Klebsiella species [7/36 (19.4 %)] and Staphylococcus aureus [7/36 (19.4 %)] were the dominant biofilm formers. However, there was no significant difference in biofilm formation among all tested isolates, with all isolates recording P-values >0.05. In light of these findings, biofilm formation potential coupled with antimicrobial resistance genes in urinary tract infection isolates may lead to difficult-to-treat infections.

2.
Microsc Microanal ; 29(4): 1523-1530, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37488818

RESUMO

Culture of shell-free and windowed eggs for drug testing and other experiments has been perfected for smaller eggs such as those of chickens, where the developing blood vessels of the chorioallantoic membrane (CAM) become accessible for manipulative studies. However, due to the thickness and hardness of the ostrich egg shell, such techniques are not applicable. Using a tork craft mini rotary and a drill bit, we established windowed egg, in-shell-membrane windowed egg, and in-shell-membrane shell-free methods in the ostrich egg, depending on whether the shell membranes were retained or not. Concomitant study of the developing CAM revealed that at embryonic day 16 (E16), the three layers of the CAM were clearly delineated and at E25, the chorionic capillaries had fused with the epithelium while the CAM at E37 had reached maturity and the chorion and the allantois were both 3-4 times thicker and villous cavity (VC) and capillary-covering cells were well delineated. Both intussusceptive and sprouting angiogenesis were found to be the predominant modes of vascular growth in the ostrich CAM. Development and maturation of the ostrich CAM are similar to those of the well-studied chicken egg, albeit its incubation time being twice in duration.


Assuntos
Membrana Corioalantoide , Struthioniformes , Animais , Membrana Corioalantoide/irrigação sanguínea , Galinhas , Alantoide/irrigação sanguínea , Córion/irrigação sanguínea
3.
Biol Rev Camb Philos Soc ; 98(6): 2152-2187, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37489059

RESUMO

In commercial poultry farming, respiratory diseases cause high morbidities and mortalities, begetting colossal economic losses. Without empirical evidence, early observations led to the supposition that birds in general, and poultry in particular, have weak innate and adaptive pulmonary defences and are therefore highly susceptible to injury by pathogens. Recent findings have, however, shown that birds possess notably efficient pulmonary defences that include: (i) a structurally complex three-tiered airway arrangement with aerodynamically intricate air-flow dynamics that provide efficient filtration of inhaled air; (ii) a specialised airway mucosal lining that comprises air-filtering (ciliated) cells and various resident phagocytic cells such as surface and tissue macrophages, dendritic cells and lymphocytes; (iii) an exceptionally efficient mucociliary escalator system that efficiently removes trapped foreign agents; (iv) phagocytotic atrial and infundibular epithelial cells; (v) phagocytically competent surface macrophages that destroy pathogens and injurious particulates; (vi) pulmonary intravascular macrophages that protect the lung from the vascular side; and (vii) proficiently phagocytic pulmonary extravasated erythrocytes. Additionally, the avian respiratory system rapidly translocates phagocytic cells onto the respiratory surface, ostensibly from the subepithelial space and the circulatory system: the mobilised cells complement the surface macrophages in destroying foreign agents. Further studies are needed to determine whether the posited weak defence of the avian respiratory system is a global avian feature or is exclusive to poultry. This review argues that any inadequacies of pulmonary defences in poultry may have derived from exacting genetic manipulation(s) for traits such as rapid weight gain from efficient conversion of food into meat and eggs and the harsh environmental conditions and severe husbandry operations in modern poultry farming. To reduce pulmonary diseases and their severity, greater effort must be directed at establishment of optimal poultry housing conditions and use of more humane husbandry practices.


Assuntos
Aves , Aves Domésticas , Animais , Pulmão , Fagócitos , Eritrócitos
4.
Microbiol Insights ; 15: 11786361211063619, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35603101

RESUMO

Background: The emergence and spread of Extended-spectrum ß-lactamases (ESBLs) in Enterobacteriaceae through the plasmid-mediated exchange have become a major threat to public health by complicating the treatment of severe infections in both animals and humans. Therefore, the current study focused on evaluating the manifestation of ESBLs production from the fecal isolates of E. coli, Shigella spp, Salmonella spp, and Klebsiella spps in commercial poultry production systems of Kiambu County, Kenya. Materials and methods: Out of 591 isolates identified as E. coli, Shigella spp, Salmonella spp, and Klebsiella spps from 437 fecal samples, only 78 were phenotypically suggestive to be ESBL producers. The possible ESBL producers were screened for the presence of blaTEM, blaCTX-M, blaOXA, and blaSHV using the PCR technique. These isolates were also screened for carriage of the QnrS gene that confers resistance to the fluoroquinolone class of drugs. Results: The most detected ESBL gene from the isolates was blaOXA (n = 20; 26%), followed by blaTEM (n = 16, 21%), with the majority of them detected in E. coli. The blaCTX-M was identified in all the 4 enteric's bacteria-type isolates tested. Three E. coli and Salmonella spp respectively were found to harbor all the 5 antimicrobial resistance (AMR) gene types. The blaTEM, blaOXA, blaSHV, and QnrS genes were not detected from Klebsiella and Shigella spps. Additionally, most of the AMR gene co-carriage was detected in both E. coli and Salmonella spps as follows blaTEM + blaOXA (n = 4); blaTEM + QnrS (n = 3); blaTEM + blaOXA + QnrS (n = 3), concurrently. Conclusion: Our findings highlight the significance of commercial poultry production in disseminating transferable antibiotic resistance genes that act as potential sources of extensive drug resistance in livestock, humans, and the environment, leaving limited therapeutic options in infection management.

5.
Open Biol ; 10(7): 190249, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32634372

RESUMO

Fractal geometry (FG) is a branch of mathematics that instructively characterizes structural complexity. Branched structures are ubiquitous in both the physical and the biological realms. Fractility has therefore been termed nature's design. The fractal properties of the bronchial (airway) system, the pulmonary artery and the pulmonary vein of the human lung generates large respiratory surface area that is crammed in the lung. Also, it permits the inhaled air to intimately approximate the pulmonary capillary blood across a very thin blood-gas barrier through which gas exchange to occur by diffusion. Here, the bronchial (airway) and vascular systems were simultaneously cast with latex rubber. After corrosion, the bronchial and vascular system casts were physically separated and cleared to expose the branches. The morphogenetic (Weibel's) ordering method was used to categorize the branches on which the diameters and the lengths, as well as the angles of bifurcation, were measured. The fractal dimensions (DF) were determined by plotting the total branch measurements against the mean branch diameters on double logarithmic coordinates (axes). The diameter-determined DF values were 2.714 for the bronchial system, 2.882 for the pulmonary artery and 2.334 for the pulmonary vein while the respective values from lengths were 3.098, 3.916 and 4.041. The diameters yielded DF values that were consistent with the properties of fractal structures (i.e. self-similarity and space-filling). The data obtained here compellingly suggest that the design of the bronchial system, the pulmonary artery and the pulmonary vein of the human lung functionally comply with the Hess-Murray law or 'the principle of minimum work'.


Assuntos
Brônquios/fisiologia , Fractais , Pulmão/fisiopatologia , Respiração , Brônquios/irrigação sanguínea , Humanos , Pulmão/irrigação sanguínea , Pulmão/fisiologia , Matemática , Artéria Pulmonar/fisiologia , Veias Pulmonares/fisiologia , Borracha/química , Borracha/uso terapêutico
6.
Sci Rep ; 10(1): 5244, 2020 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-32251351

RESUMO

Lungs of the rodent species, the African giant pouched rat (Cricetomys gambianus) and the Nigerian mole rat (Cryptomys foxi) were investigated. Significant morphometric differences exist between the two species. The volume of the lung per unit body mass was 2.7 times larger; the respiratory surface area 3.4 times greater; the volume of the pulmonary capillary blood 2 times more; the harmonic mean thickness of the blood-gas (tissue) barrier (τht) ~29% thinner and; the total pulmonary morphometric diffusing capacity (DLo2) for O2 2.3 times more in C. foxi. C. gambianus occupies open burrows that are ventilated with air while C. foxi lives in closed burrows. The less morphometrically specialized lungs of C. gambianus may be attributed to its much larger body mass (~6 times more) and possibly lower metabolic rate and its semifossorial life whereas the 'superior' lungs of C. foxi may largely be ascribed to the subterranean hypoxic and hypercapnic environment it occupies. Compared to other rodents species that have been investigated hitherto, the τht was mostly smaller in the lungs of the subterranean species and C. foxi has the highest mass-specific DLo2. The fossorial- and the subterranean rodents have acquired various pulmonary structural specializations that relate to habitats occupied.


Assuntos
Pulmão/fisiologia , Ratos-Toupeira/fisiologia , Muridae/fisiologia , Animais , Ecossistema , Pulmão/anatomia & histologia , Ratos-Toupeira/anatomia & histologia , Muridae/anatomia & histologia
7.
Conserv Physiol ; 7(1): coz060, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31687141

RESUMO

Lake Magadi, Kenya, is one of the most extreme aquatic environments on Earth (pH~10, anoxic to hyperoxic, high temperatures). Recently, increased water demand and siltation have threatened the viable hot springs near the margins of the lake where Alcolapia grahami, the only fish surviving in the lake, live. These Lake Magadi tilapia largely depend on nitrogen-rich cyanobacteria for food and are 100% ureotelic. Their exceptionally high aerobic metabolic rate, together with their emaciated appearance, suggests that they are energy-limited. Therefore, we hypothesized that during food deprivation, Magadi tilapia would economize their energy expenditure and reduce metabolic rate, aerobic performance and urea-N excretion. Surprisingly, during a 5-day fasting period, routine metabolic rates increased and swimming performance (critical swimming speed) was not affected. Urea-N excretion remained stable despite the lack of their N-rich food source. Their nitrogen use switched to endogenous sources as liver and muscle protein levels decreased after a 5-day fast, indicating proteolysis. Additionally, fish relied on carbohydrates with lowered muscle glycogen levels, but there were no signs indicating use of lipid stores. Gene expression of gill and gut urea transporters were transiently reduced as were gill rhesus glycoprotein Rhbg and Rhcg-2. The reduction in gill glutamine synthetase expression concomitant with the reduction in Rh glycoprotein gene expression indicates reduced nitrogen/ammonia metabolism, most likely decreased protein synthesis. Additionally, fish showed reduced plasma total CO2, osmolality and Na+ (but not Cl-) levels, possibly related to reduced drinking rates and metabolic acidosis. Our work shows that Lake Magadi tilapia have the capacity to survive short periods of starvation which could occur when siltation linked to flash floods covers their main food source, but their seemingly hardwired high metabolic rates would compromise long-term survival.

8.
Zoology (Jena) ; 130: 6-18, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30502840

RESUMO

The respiratory organs of the African sharptooth catfish, Clarias gariepinus, were studied to broaden existing understanding of the adaptive stratagems that have evolved for air-breathing in fish. The gills were well-developed and the air-breathing organs (ABOs) comprised labyrinthine organs (LOs), suprabranchial chamber membranes (SBCMs) and gill fans (GFns). Respectively, the gills and the LOs had the highest mass-specific respiratory surface areas of 133.7 and 141.9 mm2 per gram and among the ABOs, with a harmonic mean thickness of the blood-barrier (BGB) of 0.39 µm, the LOs had the thinnest BGB followed by the GFns (0.48 µm) and the SBCMs (0.49 µm): the water-blood barrier of the gills was relatively much thicker (7.93 µm). Vindicating why C. gariepinus is an obligate air-breather, the total mass-specific morphometric (anatomical) diffusing capacity of the ABOs for O2 per unit body weight (W) (Dto2/W) comprised 90.5% of the mean total value for all the respiratory organs. Compared with the East African catfish, Clarias mossambicus, the Dto2/W of the ABOs of C. gariepinus was 5.7 times greater. The difference between the two species of fish may be explained by the physicochemical differences of the aquatic habitats they occupy: the former occupies a seasonal river which dries up during the summer months leaving shallow pools of water in which the O2 concentrations are very low and CO2 very high while the later populates a highly eutrophic dam where the O2 levels greatly fluctuate seasonally.


Assuntos
Peixes-Gato/anatomia & histologia , Sistema Respiratório/anatomia & histologia , Animais , Peixes-Gato/fisiologia , Ecossistema , Brânquias/anatomia & histologia
9.
Proc Natl Acad Sci U S A ; 115(45): 11555-11560, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30348768

RESUMO

We describe a specimen of the basal ornithuromorph Archaeorhynchus spathula from the Lower Cretaceous Jiufotang Formation with extensive soft tissue preservation. Although it is the fifth specimen to be described, unlike the others it preserves significant traces of the plumage, revealing a pintail morphology previously unrecognized among Mesozoic birds, but common in extant neornithines. In addition, this specimen preserves the probable remnants of the paired lungs, an identification supported by topographical and macro- and microscopic anatomical observations. The preserved morphology reveals a lung very similar to that of living birds. It indicates that pulmonary specializations such as exceedingly subdivided parenchyma that allow birds to achieve the oxygen acquisition capacity necessary to support powered flight were present in ornithuromorph birds 120 Mya. Among extant air breathing vertebrates, birds have structurally the most complex and functionally the most efficient respiratory system, which facilitates their highly energetically demanding form of locomotion, even in extremely oxygen-poor environments. Archaeorhynchus is commonly resolved as the most basal known ornithuromorph bird, capturing a stage of avian evolution in which skeletal indicators of respiration remain primitive yet the lung microstructure appears modern. This adds to growing evidence that many physiological modifications of soft tissue systems (e.g., digestive system and respiratory system) that characterize living birds and are key to their current success may have preceded the evolution of obvious skeletal adaptations traditionally tracked through the fossil record.


Assuntos
Aves/anatomia & histologia , Fósseis/anatomia & histologia , Pulmão/anatomia & histologia , Oxigênio/fisiologia , Respiração , Adaptação Fisiológica , Animais , Evolução Biológica , Aves/classificação , Aves/fisiologia , China , Extinção Biológica , Plumas/anatomia & histologia , Plumas/fisiologia , Voo Animal/fisiologia , Fósseis/história , História Antiga , Pulmão/fisiologia , Filogenia
10.
Acta Histochem ; 120(7): 613-622, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30195501

RESUMO

The evolution of air-breathing and transition from water to land were pivotal events that greatly determined the ecological diversification, the advances and the successes of animal life. During their relocation onto land, the so-called bimodal breathers were literally caught at the water-air interface. Among such animals are the diverse air-breathing bony fish. Such taxa, however, strictly do not constitute the so-called 'bridging animals', i.e., the inaugural animals that crossed from water to land, nor are they their direct progenitors. The pioneer transitional animals were the Devonian rhipidistian amphibians that possessed a primitive lung which acquired O2 directly from air and discharged CO2 back into the same. By having particular morphological and physiological adaptations for terrestrialness, the modern amphibious- and aquatic air-breathers are heuristic analogues of how and why animals relocated from water to land. It has generally been espoused that lack or dearth of O2 in water, especially in the warm tropical one, was an elemental driver for adoption of air-breathing. There is, however, no direct causal relationship between the evolution of air-breathing and the shift onto land: the move onto land was a direct solution to the existing inimical respiratory conditions in water. This is evinced in the facts that: a) even after attaining capacity of air-breathing, an important preadaptation for life on land, some animals continued living in water while periodically accessing air, b) in the fish species that live in the well-oxygenated waters, e.g., torrential rivers, only few air-breathe and c) air-breathing has still evolved in freshwaters and seawaters, where levels of dissolved O2 are sufficiently high. Here, the structure and function of the respiratory organs of the air-breathing fish are succinctly outlined. Two African catfishes, Clarias mossambicus and C. gariepinus are highlighted.


Assuntos
Peixes-Gato/fisiologia , Brânquias/fisiologia , Ar , Animais , Peixes-Gato/classificação , Microscopia Eletrônica de Transmissão , Respiração
11.
PLoS One ; 12(3): e0174395, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28339478

RESUMO

High altitude flight in rarefied, extremely cold and hypoxic air is a very challenging activity. Only a few species of birds can achieve it. Hitherto, the structure of the lungs of such birds has not been studied. This is because of the rarity of such species and the challenges of preparing well-fixed lung tissue. Here, it was posited that in addition to the now proven physiological adaptations, high altitude flying birds will also have acquired pulmonary structural adaptations that enable them to obtain the large amounts of oxygen (O2) needed for flight at high elevation, an environment where O2 levels are very low. The Andean goose (Chloephaga melanoptera) normally resides at altitudes above 3000 meters and flies to elevations as high as 6000 meters where O2 becomes limiting. In this study, its lung was morphologically- and morphometrically investigated. It was found that structurally the lungs are exceptionally specialized for gas exchange. Atypically, the infundibulae are well-vascularized. The mass-specific volume of the lung (42.8 cm3.kg-1), the mass-specific respiratory surface area of the blood-gas (tissue) barrier (96.5 cm2.g-1) and the mass-specific volume of the pulmonary capillary blood (7.44 cm3.kg-1) were some of the highest values so far reported in birds. The pulmonary structural specializations have generated a mass-specific total (overall) pulmonary morphometric diffusing capacity of the lung for oxygen (DLo2) of 0.119 mlO2.sec-1.mbar-1.kg-1, a value that is among some of the highest ones in birds that have been studied. The adaptations of the lung of the Andean goose possibly produce the high O2 conductance needed to live and fly at high altitude.


Assuntos
Altitude , Voo Animal/fisiologia , Gansos/anatomia & histologia , Pulmão/anatomia & histologia , Animais , Gansos/fisiologia , Pulmão/fisiologia , Tamanho do Órgão/fisiologia , Capacidade de Difusão Pulmonar/fisiologia , Especificidade da Espécie
12.
Biol Rev Camb Philos Soc ; 92(3): 1475-1504, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27465497

RESUMO

Among the extant air-breathing vertebrates, the avian respiratory system is structurally the most complex and functionally the most efficient gas exchanger. Having been investigated for over four centuries, some aspects of its biology have been extremely challenging and highly contentious and others still remain unresolved. Here, while assessing the most recent findings, four notable aspects of the structure and function of the avian respiratory system are examined critically to highlight the questions, speculations, controversies and debates that have arisen from past research. The innovative techniques and experiments that were performed to answer particular research questions are emphasised. The features that are outlined here concern the arrangement of the airways, the path followed by the inspired air, structural features of the lung and the air and blood capillaries, and the level of cellular defence in the avian respiratory system. Hitherto, based on association with the proven efficiency of naturally evolved and human-made counter-current exchange systems rather than on definite experimental evidence, a counter-current gas exchange system was suggested to exist in the avian respiratory system and was used to explain its exceptional efficiency. However, by means of an elegant experiment in which the direction of the air-flow in the lung was reversed, a cross-current system was shown to be in operation instead. Studies of the arrangement of the airways and the blood vessels corroborated the existence of a cross-current system in the avian lung. While the avian respiratory system is ventilated tidally, like most other invaginated gas exchangers, the lung, specifically the paleopulmonic parabronchi, is ventilated unidirectionally and continuously in a caudocranial (back-to-front) direction by synchronized actions of the air sacs. The path followed by the inspired air in the lung-air sac system is now known to be controlled by a mechanism of aerodynamic valving and not by anatomical valves or sphincters, as was previously supposed. The structural strength of the air and blood capillaries is derived from: the interdependence between the air and blood capillaries; a tethering effect between the closely entwined respiratory units; the presence of epithelial-epithelial cell connections (retinacula or cross-bridges) that join the blood capillaries while separating the air capillaries; the abundance and intricate arrangement of the connective tissue elements, i.e. collagen, elastin, and smooth muscle fibres; the presence of type-IV collagen, especially in the basement membranes of the blood-gas barrier and the epithelial-epithelial cell connections; and a putative tensegrity state in the lung. Notwithstanding the paucity of free surface pulmonary macrophages, the respiratory surface of the avian lung is well protected from pathogens and particulates by an assortment of highly efficient phagocytic cells. In commercial poultry production, instead of weak pulmonary cellular defence, stressful husbandry practices such as overcrowding, force-feeding, and intense genetic manipulation for rapid weight gain and egg production may account for the reported susceptibility of birds to aerosol-transmitted diseases.


Assuntos
Aves/fisiologia , Fenômenos Fisiológicos Respiratórios , Sistema Respiratório/anatomia & histologia , Animais , Capilares/fisiologia , Pulmão/anatomia & histologia , Pulmão/fisiologia
13.
Cell Tissue Res ; 367(3): 747-767, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27988805

RESUMO

Respiration acquires O2 from the external fluid milieu and eliminates CO2 back into the same. Gas exchangers evolved under certain immutable physicochemical laws upon which their elemental functional design is hardwired. Adaptive changes have occurred within the constraints set by such laws to satisfy metabolic needs for O2, environmental conditions, respiratory medium utilized, lifestyle pursued and phylogenetic level of development: correlation between structure and function exists. After the inaugural simple cell membrane, as body size and structural complexity increased, respiratory organs formed by evagination or invagination: the gills developed by the former process and the lungs by the latter. Conservation of water on land was the main driver for invagination of the lungs. In gills, respiratory surface area increases by stratified arrangement of the structural components while in lungs it occurs by internal subdivision. The minuscule terminal respiratory units of lungs are stabilized by surfactant. In gas exchangers, respiratory fluid media are transported by convection over long distances, a process that requires energy. However, movement of respiratory gases across tissue barriers occurs by simple passive diffusion. Short distances and large surface areas are needed for diffusion to occur efficiently. Certain properties, e.g., diffusion of gases through the tissue barrier, stabilization of the respiratory units by surfactant and a thin tripartite tissue barrier, have been conserved during the evolution of the gas exchangers. In biology, such rare features are called Bauplans, blueprints or frozen cores. That several of them (Bauplans) exist in gas exchangers almost certainly indicates the importance of respiration to life.


Assuntos
Gases/metabolismo , Pulmão/metabolismo , Animais , Líquidos Corporais/metabolismo , Capilares/metabolismo , Humanos , Respiração , Tensoativos/metabolismo
14.
Biol Open ; 6(1): 83-91, 2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-27895051

RESUMO

Insect larvae are reported to be a major component of the simple but highly productive trophic web found in Lake Magadi (Kenya, Africa), which is considered to be one of the most extreme aquatic environments on Earth. Previous studies show that fish must display biochemical and physiological adjustments to thrive under the extreme conditions of the lake. However, information for invertebrates is lacking. In the present study, the occurrence of the larval chironomid Tanytarsus minutipalpus is reported in Lake Magadi for the first time. Additionally, changes in larval metabolism and antioxidant defense correlated with diel variations in the extremely hostile environmental conditions of the lake are described. Wide variations in water temperature (20.2-29.3°C) and dissolved oxygen content (3.2-18.6 mg O2 l-1) were observed at different times of day, without significant change in water pH (10.0±0.03). Temperature and dissolved oxygen were higher at 13:00 h (29.3±0.4°C and 18.6±1.0 mg O2 l-1) and 19:00 h (29.3±0.8°C and 16.2±1.6 mg O2 l-1) and lower at 01:00 h (21.1±0.1°C and 10.7±0.03 mg O2 l-1) and 07:00 h (20.2±0.4°C and 3.2±0.7 mg O2 l-1). Significant and parallel increases in parameters related to metabolism (cholinesterase, glucose, cholesterol, urea, creatinine and hemoglobin) and the antioxidant system (SOD, GPx, GR, GSH and GSSG) were observed in larvae collected at 13:00 h. In contrast, no significant changes were observed in pro-oxidants (ROS and NO), TOSC and oxidative damage parameters (LPO and DNA damage). Therefore, the observed increases in temperature and dissolved O2 content in Lake Magadi were associated with changes in the antioxidant system of T. minutipalpus larvae. Adjustments performed by the chironomid larvae were efficient in maintaining body homeostasis, as well as protecting biomolecules against oxidative damage, so that oxidative stress did not occur. GSH-GSSG and GPx-GR systems appeared to play an essential role in the adjustments displayed by the chironomid larvae during the diel changes in the extreme conditions of Lake Magadi.

15.
Sci Rep ; 6: 26990, 2016 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-27257105

RESUMO

The Magadi tilapia, Alcolapia grahami, a small cichlid fish of Lake Magadi, Kenya lives in one of the most challenging aquatic environments on earth, characterized by very high alkalinity, unusual water chemistry, and extreme O2, ROS, and temperature regimes. In contrast to most fishes which live at temperatures substantially lower than the 36-40 °C of mammals and birds, an isolated population (South West Hot Springs, SWHS) of Magadi tilapia thrives in fast-flowing hotsprings with daytime highs of 43 °C and night-time lows of 32 °C. Another population (Fish Springs Lagoon, FSL) lives in a lagoon with fairly stable daily temperatures (33-36 °C). The upper critical temperatures (Ctmax) of both populations are very high; moreover the SWHS tilapia exhibit the highest Ctmax (45.6 °C) ever recorded for a fish. Routine rates of O2 consumption (MO2) measured on site, together with MO2 and swimming performance at 25, 32, and 39 °C in the laboratory, showed that the SWHS tilapia exhibited the greatest metabolic performance ever recorded in a fish. These rates were in the basal range of a small mammal of comparable size, and were all far higher than in the FSL fish. The SWHS tilapia represents a bellwether organism for global warming.


Assuntos
Tilápia/fisiologia , Adaptação Fisiológica , Animais , Metabolismo Basal , Temperatura Corporal , Fontes Termais , Lagos/química , Mamíferos , Oxigênio/química , Consumo de Oxigênio , Natação
16.
Anat Rec (Hoboken) ; 299(8): 1015-26, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27097768

RESUMO

In ostrich husbandry, economic losses have mainly been attributed to low hatchability of eggs, which has mostly been attributed to the structure of the eggshell. The main aim of this study was to investigate the morphology and the morphometry of the ostrich eggshell using micro-focus X-ray computer tomography and scanning electron microscopy. The mean weight and volume of the eggs were 1,312 ± 56SE g and 1,333 ± 44SE cm(3) , respectively. The mean thickness and the mean surface area of the eggshell was 1.83 ± 0.10SE mm and 619 ± 15SE cm(2) respectively and the mean total number of pores in the shell was 40,596 ± 1832SE. No significant correlations were found between the thickness of the shell and the weight of the eggs, the volume of the egg and the thickness of the shell, the diameter of the pores and the number of pores, the volume of the pores and the number of pores or the surface area of the pores and the number of pores. The mean diameters of the pores on the blunt (air cell) - (0.02 ± 0.04SE mm) and the sharp (0.26 ± 0.36SE mm) parts of the eggshell were significantly different (P = 0.0001) while the mean volumes and the surface areas of the pores in these parts were not significantly different (P = 0.203 and P = 0.089, respectively). The sizes of the pores differed in different parts of the eggshell, which consisted mainly of tightly arranged mammillary cones that that fused to the palisade columns. The external surface of the ostrich eggshell was covered by a cuticle. Anat Rec, 299:1015-1026, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Casca de Ovo/anatomia & histologia , Struthioniformes/anatomia & histologia , Microtomografia por Raio-X/métodos , Animais , Casca de Ovo/fisiologia , Feminino , Microscopia Eletrônica de Varredura , Struthioniformes/fisiologia
17.
Anat Rec (Hoboken) ; 298(10): 1673-88, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25857723

RESUMO

The blood capillaries (BC) and the air capillaries (ACs) are the terminal gas exchange units of the avian lung. The minuscule structures are astonishingly strong. It is only recently that the morphologies and the biomechanical properties of the BCs and the ACs were investigated. Regarding size and shape, the BCs and the ACs differ remarkably. While they were previously claimed to be tubular (cylindrical) in shape, the ACs are rather rotund structures which interconnect across short, narrow passageways. Atypical of those in other tissues, the BCs in the exchange tissue of the avian lung comprise of distinct segments which are about as long as they are wide and which are coupled in three-dimensions. The thin blood-gas barrier (BGB) which separates the ACs from the BCs is peculiarly strong. The causes of the strengths of the ACs and the BCs in general and the BGB in particular are varied and controversial. Here, the recent morphological and physiological findings on the structure, biomechanical properties, and the strengths of the respiratory units of the avian lung and the BGB have been critically examined. Also, in light of the new morphological findings of the ACs and the BCs, the functional model which is currently in use to assess the gas exchange efficiency of the avian lung should be revised and the inappropriateness of the terms 'blood capillary' and 'air capillary' for the gas exchange units of the avian lung is pointed out.


Assuntos
Pulmão/anatomia & histologia , Pulmão/metabolismo , Troca Gasosa Pulmonar/fisiologia , Animais , Fenômenos Biomecânicos/fisiologia , Aves , Barreira Alveolocapilar/metabolismo , Capilares/anatomia & histologia , Capilares/metabolismo , Pulmão/irrigação sanguínea
18.
J Exp Biol ; 216(Pt 16): 2998-3007, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23885087

RESUMO

The small cichlid fish Alcolapia grahami lives in Lake Magadi, Kenya, one of the most extreme aquatic environments on Earth (pH ~10, carbonate alkalinity ~300 mequiv l(-1)). The Magadi tilapia is the only 100% ureotelic teleost; it normally excretes no ammonia. This is interpreted as an evolutionary adaptation to overcome the near impossibility of sustaining an NH3 diffusion gradient across the gills against the high external pH. In standard ammoniotelic teleosts, branchial ammonia excretion is facilitated by Rh glycoproteins, and cortisol plays a role in upregulating these carriers, together with other components of a transport metabolon, so as to actively excrete ammonia during high environmental ammonia (HEA) exposure. In Magadi tilapia, we show that at least three Rh proteins (Rhag, Rhbg and Rhcg2) are expressed at the mRNA level in various tissues, and are recognized in the gills by specific antibodies. During HEA exposure, plasma ammonia levels and urea excretion rates increase markedly, and mRNA expression for the branchial urea transporter mtUT is elevated. Plasma cortisol increases and branchial mRNAs for Rhbg, Rhcg2 and Na(+),K(+)-ATPase are all upregulated. Enzymatic activity of the latter is activated preferentially by NH4(+) (versus K(+)), suggesting it can function as an NH4(+)-transporter. Model calculations suggest that active ammonia excretion against the gradient may become possible through a combination of Rh protein and NH4(+)-activated Na(+)-ATPase function.


Assuntos
Adenosina Trifosfatases/metabolismo , Amônia/farmacologia , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Peixes/metabolismo , Glicoproteínas de Membrana/metabolismo , Tilápia/metabolismo , Ureia/metabolismo , Animais , Cálcio/sangue , Exposição Ambiental , Ativação Enzimática/efeitos dos fármacos , Eritrócitos/metabolismo , Proteínas de Peixes/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Imuno-Histoquímica , Íons/sangue , Magnésio/sangue , Glicoproteínas de Membrana/genética , Modelos Biológicos , Consumo de Oxigênio/efeitos dos fármacos , Filogenia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Tilápia/sangue , Tilápia/genética
19.
Compr Physiol ; 3(2): 849-915, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23720333

RESUMO

Life originated in anoxia, but many organisms came to depend upon oxygen for survival, independently evolving diverse respiratory systems for acquiring oxygen from the environment. Ambient oxygen tension (PO2) fluctuated through the ages in correlation with biodiversity and body size, enabling organisms to migrate from water to land and air and sometimes in the opposite direction. Habitat expansion compels the use of different gas exchangers, for example, skin, gills, tracheae, lungs, and their intermediate stages, that may coexist within the same species; coexistence may be temporally disjunct (e.g., larval gills vs. adult lungs) or simultaneous (e.g., skin, gills, and lungs in some salamanders). Disparate systems exhibit similar directions of adaptation: toward larger diffusion interfaces, thinner barriers, finer dynamic regulation, and reduced cost of breathing. Efficient respiratory gas exchange, coupled to downstream convective and diffusive resistances, comprise the "oxygen cascade"-step-down of PO2 that balances supply against toxicity. Here, we review the origin of oxygen homeostasis, a primal selection factor for all respiratory systems, which in turn function as gatekeepers of the cascade. Within an organism's lifespan, the respiratory apparatus adapts in various ways to upregulate oxygen uptake in hypoxia and restrict uptake in hyperoxia. In an evolutionary context, certain species also become adapted to environmental conditions or habitual organismic demands. We, therefore, survey the comparative anatomy and physiology of respiratory systems from invertebrates to vertebrates, water to air breathers, and terrestrial to aerial inhabitants. Through the evolutionary directions and variety of gas exchangers, their shared features and individual compromises may be appreciated.


Assuntos
Evolução Biológica , Respiração , Ar , Animais , Homeostase , Humanos , Oxigênio/fisiologia , Fenômenos Fisiológicos Respiratórios , Sistema Respiratório/anatomia & histologia , Água
20.
Biol Open ; 2(3): 267-76, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23519074

RESUMO

Structural failure of blood-gas barrier (BGB) and epithelial-epithelial cell connections (EECCs) in different vascular regions of the exchange tissue of the lung was studied in rested and exercised chickens. The number of red blood cells (nRBCs) was counted and protein concentration (PC) measured after lavaging the respiratory system, and blood was sampled to determine the blood lactate levels (BLLs). The numbers of complete BGB breaks (nBGBBs) and those of the EECCs (nEECCBs) were counted in the different vascular territories of the lung. The nRBCs and the PCs increased with increasing exercise intensities but the rate of increase decreased at higher workloads. From rest to the fastest experimental treadmill speed of 2.95 m.sec(-1), BLLs increased 4-fold. In all cases, the nEECCBs exceeded those of the BGB, showing that structurally the BGB is relatively weaker than the EECC. The increase in the number of breaks with increasing exercise can be attributed to increase in the pulmonary capillary blood pressure (PCBP) from faster heart rates and higher cardiac outputs, while the leveling out of the measurements made at higher workloads may have arisen from hemodynamic changes that initially ensued from exudation of blood plasma and then flow of blood into the air capillaries on failure of the BGB. The relative differences in the nBGBBs and the nEECCBs in the different vascular regions of the lung were ascribed to diameters of the branches and their points of origin and angles of bifurcation from the pulmonary artery. Presence of RBCs in the air capillaries of the lungs of rested chickens showed that failure of the BGB commonly occurs even in healthy and unstressed birds. Rapid repair and/or defense responses, which were observed, may explain how birds cope with mechanical injuries of the BGB.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...