Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microb Genom ; 9(3)2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36951916

RESUMO

Among Shiga toxin (Stx)-producing Escherichia coli (STEC) strains of various serotypes, O157:H7 and five major non-O157 STEC (O26:H11, O111:H8, O103:H2, O121:H19 and O145:H28) can be selectively isolated by using tellurite-containing media. While human infections by O165:H25 STEC strains have been reported worldwide, their detection and isolation are not easy, as they are not resistant to tellurite. Systematic whole-genome sequencing (WGS) analyses have not yet been conducted. Here, we defined O165:H25 strains and their close relatives, including O172:H25 strains, as clonal complex 119 (CC119) and performed a global WGS analysis of the major lineage of CC119, called CC119 sensu stricto (CC119ss), by using 202 CC119ss strains, including 90 strains sequenced in this study. Detailed comparisons of 13 closed genomes, including 7 obtained in this study, and systematic analyses of Stx phage genomes in 50 strains covering the entire CC119ss lineage, were also conducted. These analyses revealed that the Stx2a phage, the locus of enterocyte effacement (LEE) encoding a type III secretion system (T3SS), many prophages encoding T3SS effectors, and the virulence plasmid were acquired by the common ancestor of CC119ss and have been stably maintained in this lineage, while unusual exchanges of Stx1a and Stx2c phages were found at a single integration site. Although the genome sequences of Stx2a phages were highly conserved, CC119ss strains exhibited notable variation in Stx2 production levels. Further analyses revealed the lack of SpLE1-like elements carrying the tellurite resistance genes in CC119ss and defects in rhamnose, sucrose, salicin and dulcitol fermentation. The genetic backgrounds underlying these defects were also clarified.


Assuntos
Proteínas de Escherichia coli , Escherichia coli Shiga Toxigênica , Humanos , Escherichia coli Shiga Toxigênica/genética , Toxina Shiga/genética , Fermentação , Proteínas de Escherichia coli/genética , Genômica , Carboidratos
2.
Microb Genom ; 7(12)2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34878971

RESUMO

Shiga toxin (Stx)-producing Escherichia coli (STEC) are foodborne pathogens causing serious diseases, such as haemorrhagic colitis and haemolytic uraemic syndrome. Although O157:H7 STEC strains have been the most prevalent, incidences of STEC infections by several other serotypes have recently increased. O121:H19 STEC is one of these major non-O157 STECs, but systematic whole genome sequence (WGS) analyses have not yet been conducted on this STEC. Here, we performed a global WGS analysis of 638 O121:H19 strains, including 143 sequenced in this study, and a detailed comparison of 11 complete genomes, including four obtained in this study. By serotype-wide WGS analysis, we found that O121:H19 strains were divided into four lineages, including major and second major lineages (named L1 and L3, respectively), and that the locus of enterocyte effacement (LEE) encoding a type III secretion system (T3SS) was acquired by the common ancestor of O121:H19. Analyses of 11 complete genomes belonging to L1 or L3 revealed remarkable interlineage differences in the prophage pool and prophage-encoded T3SS effector repertoire, independent acquisition of virulence plasmids by the two lineages, and high conservation in the prophage repertoire, including that for Stx2a phages in lineage L1. Further sequence determination of complete Stx2a phage genomes of 49 strains confirmed that Stx2a phages in lineage L1 are highly conserved short-tailed phages, while those in lineage L3 are long-tailed lambda-like phages with notable genomic diversity, suggesting that an Stx2a phage was acquired by the common ancestor of L1 and has been stably maintained. Consistent with these genomic features of Stx2a phages, most lineage L1 strains produced much higher levels of Stx2a than lineage L3 strains. Altogether, this study provides a global phylogenetic overview of O121:H19 STEC and shows the interlineage genomic differences and the highly conserved genomic features of the major lineage within this serotype of STEC.


Assuntos
Escherichia coli Shiga Toxigênica/classificação , Fatores de Virulência/genética , Sequenciamento Completo do Genoma/métodos , Animais , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Filogenia , Polimorfismo de Nucleotídeo Único , Prófagos/genética , Sorotipagem , Escherichia coli Shiga Toxigênica/genética , Escherichia coli Shiga Toxigênica/patogenicidade , Sistemas de Secreção Tipo III/genética
3.
Microb Genom ; 6(1)2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31935184

RESUMO

Phages and plasmids play important roles in bacterial evolution and diversification. Although many draft genomes have been generated, phage and plasmid genomes are usually fragmented, limiting our understanding of their dynamics. Here, we performed a systematic analysis of 239 draft genomes and 7 complete genomes of Shiga toxin (Stx)-producing Escherichia coli O145:H28, the major virulence factors of which are encoded by prophages (PPs) or plasmids. The results indicated that PPs are more stably maintained than plasmids. A set of ancestrally acquired PPs was well conserved, while various PPs, including Stx phages, were acquired by multiple sublineages. In contrast, gains and losses of a wide range of plasmids have frequently occurred across the O145:H28 lineage, and only the virulence plasmid was well conserved. The different dynamics of PPs and plasmids have differentially impacted the pangenome of O145:H28, with high proportions of PP- and plasmid-associated genes in the variably present and rare gene fractions, respectively. The dynamics of PPs and plasmids have also strongly impacted virulence gene repertoires, such as the highly variable distribution of stx genes and the high conservation of a set of type III secretion effectors, which probably represents the core effectors of O145:H28 and the genes on the virulence plasmid in the entire O145:H28 population. These results provide detailed insights into the dynamics of PPs and plasmids, and show the application of genomic analyses using a large set of draft genomes and appropriately selected complete genomes.


Assuntos
Genoma Bacteriano , Plasmídeos , Prófagos , Escherichia coli Shiga Toxigênica/genética , Siphoviridae , Fatores de Virulência/genética , Filogenia , Polimorfismo de Nucleotídeo Único
4.
Microb Genom ; 3(11)2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29208163

RESUMO

A key virulence factor of enterohaemorrhagic Escherichia coli (EHEC) is the bacteriophage-encoded Shiga toxin (Stx). Stxs are classified into two types, Stx1 and Stx2, and Stx2-producing strains are thought to cause more severe infections than strains producing only Stx1. Although O26 : H11 is the second most prevalent EHEC following O157 : H7, the majority of O26 : H11 strains produce Stx1 alone. However, Stx2-producing O26 strains have increasingly been detected worldwide. Through a large-scale genome analysis, we present a global phylogenetic overview and evolutionary timescale for E. coli O26 : H11. The origin of O26 has been estimated to be 415 years ago. Sequence type 21C1 (ST21C1), one of the two sublineages of ST21, the most predominant O26 : H11 lineage worldwide, emerged 213 years ago from one of the three ST29 sublineages (ST29C2). The other ST21 lineage (ST21C2) emerged 95 years ago from ST21C1. Increases in population size occurred in the late 20th century for all of the O26 lineages, but most remarkably for ST21C2. Analysis of the distribution of stx2-positive strains revealed the recent and repeated acquisition of the stx2 gene in multiple lineages of O26, both in ST21 and ST29. Other major EHEC virulence genes, such as type III secretion system effector genes and plasmid-encoded virulence genes, were well conserved in ST21 compared to ST29. In addition, more antimicrobial-resistance genes have accumulated in the ST21C1 lineage. Although current attention is focused on several highly virulent ST29 clones that have acquired the stx2 gene, there is also a considerable risk that the ST21 lineage could yield highly virulent clones.


Assuntos
Farmacorresistência Bacteriana/genética , Escherichia coli Êntero-Hemorrágica/classificação , Escherichia coli Êntero-Hemorrágica/genética , Infecções por Escherichia coli/microbiologia , Toxina Shiga II/genética , Fatores de Virulência/genética , Animais , Evolução Molecular , Humanos , Filogenia , Virulência/genética
5.
Trop Anim Health Prod ; 48(2): 321-9, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26584940

RESUMO

Staphylococcus (S.) aureus is one of the most important pathogens causing bovine mastitis. The aim of the present work was to follow in three herds and during the 3 years the clonality of S. aureus isolated from California Mastitis Test (CMT)-positive cows at the experimental station of Toukounous (Niger) by (i) comparing their pulsed field gel electrophoresis (PFGE) fingerprints, (ii) identifying their virulotypes by PCR amplification and (iii) assessing the production of capsule and the formation of biofilm. The 88 S. aureus isolates belonged to 14 different pulsotypes, 3 of them being predominant: A (30 %), D (27 %), B (15 %). A and B pulsotypes had the highest profile similarity coefficient (94 %), while others had similarity coefficients under 60 %. Seventy-five S. aureus isolates were further studied for their virulotypes, capsular antigens and biofilm production. Most surface factor-, leukocidin- and haemolysin-, but not the enterotoxin-encoding genes were detected in the majority (>75 %) of the isolates and were evenly distributed between the A, B and D pulsotype isolates. The majority of the 72 S. aureus positive with the cap5H or cap8H PCR produced the CP5 (82 %) or the CP8 (88 %) capsular antigen, respectively. Biofilm production by the 57 icaA-positive isolates was strong for 8 isolates, moderate for 31 isolates but weak for 18 isolates, implying that the icaA gene may not be expressed in vitro by one third of the positive isolates. Similar to other studies, those results confirm that a restricted number of S. aureus clones circulate within the three herds at Toukounous and that their specific virulence-associated properties must still be further studied.


Assuntos
Mastite Bovina/epidemiologia , Infecções Estafilocócicas/veterinária , Staphylococcus aureus/patogenicidade , Agricultura , Animais , Técnicas de Tipagem Bacteriana/veterinária , Bovinos , Linhagem Celular , Eletroforese em Gel de Campo Pulsado/veterinária , Feminino , Mastite Bovina/microbiologia , Leite/microbiologia , Níger/epidemiologia , Reação em Cadeia da Polimerase/veterinária , Infecções Estafilocócicas/epidemiologia , Infecções Estafilocócicas/microbiologia , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...