Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Med ; 29(12): 3127-3136, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37957373

RESUMO

Toll-like receptor-driven and interleukin-1 (IL-1) receptor-driven inflammation mediated by IL-1 receptor-associated kinase 4 (IRAK4) is involved in the pathophysiology of hidradenitis suppurativa (HS) and atopic dermatitis (AD). KT-474 (SAR444656), an IRAK4 degrader, was studied in a randomized, double-blind, placebo-controlled phase 1 trial where the primary objective was safety and tolerability. Secondary objectives included pharmacokinetics, pharmacodynamics and clinical activity in patients with moderate to severe HS and in patients with moderate to severe AD. KT-474 was administered as a single dose and then daily for 14 d in 105 healthy volunteers (HVs), followed by dosing for 28 d in an open-label cohort of 21 patients. Degradation of IRAK4 was observed in HV blood, with mean reductions after a single dose of ≥93% at 600-1,600 mg and after 14 daily doses of ≥95% at 50-200 mg. In patients, similar IRAK4 degradation was achieved in blood, and IRAK4 was normalized in skin lesions where it was overexpressed relative to HVs. Reduction of disease-relevant inflammatory biomarkers was demonstrated in the blood and skin of patients with HS and patients with AD and was associated with improvement in skin lesions and symptoms. There were no drug-related infections. These results, from what, to our knowledge, is the first published clinical trial using a heterobifunctional degrader, provide initial proof of concept for KT-474 in HS and AD to be further confirmed in larger trials. ClinicalTrials.gov identifier: NCT04772885 .


Assuntos
Dermatite Atópica , Hidradenite Supurativa , Humanos , Hidradenite Supurativa/tratamento farmacológico , Dermatite Atópica/tratamento farmacológico , Quinases Associadas a Receptores de Interleucina-1 , Resultado do Tratamento , Pele/patologia , Método Duplo-Cego , Índice de Gravidade de Doença
2.
Nat Commun ; 12(1): 366, 2021 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-33446657

RESUMO

Many tumour cells show dependence on exogenous serine and dietary serine and glycine starvation can inhibit the growth of these cancers and extend survival in mice. However, numerous mechanisms promote resistance to this therapeutic approach, including enhanced expression of the de novo serine synthesis pathway (SSP) enzymes or activation of oncogenes that drive enhanced serine synthesis. Here we show that inhibition of PHGDH, the first step in the SSP, cooperates with serine and glycine depletion to inhibit one-carbon metabolism and cancer growth. In vitro, inhibition of PHGDH combined with serine starvation leads to a defect in global protein synthesis, which blocks the activation of an ATF-4 response and more broadly impacts the protective stress response to amino acid depletion. In vivo, the combination of diet and inhibitor shows therapeutic efficacy against tumours that are resistant to diet or drug alone, with evidence of reduced one-carbon availability. However, the defect in ATF4-response seen in vitro following complete depletion of available serine is not seen in mice, where dietary serine and glycine depletion and treatment with the PHGDH inhibitor lower but do not eliminate serine. Our results indicate that inhibition of PHGDH will augment the therapeutic efficacy of a serine depleted diet.


Assuntos
Glicina/metabolismo , Neoplasias/dietoterapia , Serina/biossíntese , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Glicina/análise , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/enzimologia , Neoplasias/metabolismo , Neoplasias/fisiopatologia , Fosfoglicerato Desidrogenase/metabolismo , Serina/análise
3.
Cancer Discov ; 10(9): 1352-1373, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32571778

RESUMO

A hallmark of metastasis is the adaptation of tumor cells to new environments. Metabolic constraints imposed by the serine and glycine-limited brain environment restrict metastatic tumor growth. How brain metastases overcome these growth-prohibitive conditions is poorly understood. Here, we demonstrate that 3-phosphoglycerate dehydrogenase (PHGDH), which catalyzes the rate-limiting step of glucose-derived serine synthesis, is a major determinant of brain metastasis in multiple human cancer types and preclinical models. Enhanced serine synthesis proved important for nucleotide production and cell proliferation in highly aggressive brain metastatic cells. In vivo, genetic suppression and pharmacologic inhibition of PHGDH attenuated brain metastasis, but not extracranial tumor growth, and improved overall survival in mice. These results reveal that extracellular amino acid availability determines serine synthesis pathway dependence, and suggest that PHGDH inhibitors may be useful in the treatment of brain metastasis. SIGNIFICANCE: Using proteomics, metabolomics, and multiple brain metastasis models, we demonstrate that the nutrient-limited environment of the brain potentiates brain metastasis susceptibility to serine synthesis inhibition. These findings underscore the importance of studying cancer metabolism in physiologically relevant contexts, and provide a rationale for using PHGDH inhibitors to treat brain metastasis.This article is highlighted in the In This Issue feature, p. 1241.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Encéfalo/patologia , Fosfoglicerato Desidrogenase/antagonistas & inibidores , Animais , Antineoplásicos/farmacologia , Encéfalo/metabolismo , Neoplasias Encefálicas/secundário , Linhagem Celular Tumoral , Conjuntos de Dados como Assunto , Resistencia a Medicamentos Antineoplásicos , Feminino , Técnicas de Silenciamento de Genes , Glicina/análise , Glicina/metabolismo , Humanos , Metabolômica , Camundongos , Fosfoglicerato Desidrogenase/genética , Fosfoglicerato Desidrogenase/metabolismo , Proteômica , RNA-Seq , Serina/análise , Serina/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
4.
J Med Chem ; 63(11): 5697-5722, 2020 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-32073845

RESUMO

The alternative pathway (AP) of the complement system is a key contributor to the pathogenesis of several human diseases including age-related macular degeneration, paroxysmal nocturnal hemoglobinuria (PNH), atypical hemolytic uremic syndrome (aHUS), and various glomerular diseases. The serine protease factor B (FB) is a key node in the AP and is integral to the formation of C3 and C5 convertase. Despite the prominent role of FB in the AP, selective orally bioavailable inhibitors, beyond our own efforts, have not been reported previously. Herein we describe in more detail our efforts to identify FB inhibitors by high-throughput screening (HTS) and leveraging insights from several X-ray cocrystal structures during optimization efforts. This work culminated in the discovery of LNP023 (41), which is currently being evaluated clinically in several diverse AP mediated indications.


Assuntos
Ácido Benzoico/química , Fator B do Complemento/antagonistas & inibidores , Indóis/química , Síndrome Hemolítico-Urêmica Atípica/metabolismo , Síndrome Hemolítico-Urêmica Atípica/patologia , Ácido Benzoico/metabolismo , Ácido Benzoico/farmacocinética , Sítios de Ligação , Domínio Catalítico , Fator B do Complemento/metabolismo , Cristalografia por Raios X , Avaliação Pré-Clínica de Medicamentos , Meia-Vida , Humanos , Indóis/metabolismo , Indóis/farmacocinética , Concentração Inibidora 50 , Degeneração Macular/metabolismo , Degeneração Macular/patologia , Simulação de Dinâmica Molecular , Relação Estrutura-Atividade
5.
Drug Discov Today Technol ; 31: 53-60, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31200860

RESUMO

Targeted protein degradation mediated by small molecule degraders represents an exciting new therapeutic opportunity to eliminate disease-causing proteins. These molecules recruit E3 ubiquitin ligases to the protein of interest and mediate its ubiquitination and subsequent proteolysis by the proteasome. Significant advancements have been made in the discovery and development of clinically relevant degraders. In this review we will focus on the recent progress in understanding ternary complex formation and structures, ubiquitination, and other critical factors that govern the efficiency of degraders both in vitro and in vivo. With deeper knowledges of these areas, the field is building guiding principles to reduce the level of empiricism and to identify therapeutically relevant degraders more rationally and efficiently.


Assuntos
Proteólise , Descoberta de Drogas , Humanos , Ubiquitinação
6.
Nat Chem Biol ; 15(7): 666-668, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31209353

RESUMO

The complement pathway is an important part of the immune system, and uncontrolled activation is implicated in many diseases. The human complement component 5 protein (C5) is a validated drug target within the complement pathway, as an anti-C5 antibody (Soliris) is an approved therapy for paroxysmal nocturnal hemoglobinuria. Here, we report the identification, optimization and mechanism of action for the first small-molecule inhibitor of C5 complement protein.


Assuntos
Complemento C5/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Complemento C5/metabolismo , Humanos , Conformação Molecular , Bibliotecas de Moléculas Pequenas/química
7.
J Med Chem ; 62(9): 4656-4668, 2019 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-30995036

RESUMO

Complement factor D (FD), a highly specific S1 serine protease, plays a central role in the amplification of the alternative complement pathway (AP) of the innate immune system. Dysregulation of AP activity predisposes individuals to diverse disorders such as age-related macular degeneration, atypical hemolytic uremic syndrome, membranoproliferative glomerulonephritis type II, and paroxysmal nocturnal hemoglobinuria. Previously, we have reported the screening efforts and identification of reversible benzylamine-based FD inhibitors (1 and 2) binding to the open active conformation of FD. In continuation of our drug discovery program, we designed compounds applying structure-based approaches to improve interactions with FD and gain selectivity against S1 serine proteases. We report herein the design, synthesis, and medicinal chemistry optimization of the benzylamine series culminating in the discovery of 12, an orally bioavailable and selective FD inhibitor. 12 demonstrated systemic suppression of AP activation in a lipopolysaccharide-induced AP activation model as well as local ocular suppression in intravitreal injection-induced AP activation model in mice expressing human FD.


Assuntos
Benzilaminas/farmacologia , Via Alternativa do Complemento/efeitos dos fármacos , Inibidores de Serina Proteinase/farmacologia , Animais , Benzilaminas/síntese química , Benzilaminas/metabolismo , Sítios de Ligação , Fator D do Complemento/antagonistas & inibidores , Fator D do Complemento/química , Fator D do Complemento/metabolismo , Cães , Desenho de Fármacos , Humanos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Simulação de Acoplamento Molecular , Conformação Proteica , Ratos , Inibidores de Serina Proteinase/síntese química , Inibidores de Serina Proteinase/metabolismo
8.
Proc Natl Acad Sci U S A ; 116(16): 7926-7931, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30926668

RESUMO

Dysregulation of the alternative complement pathway (AP) predisposes individuals to a number of diseases including paroxysmal nocturnal hemoglobinuria, atypical hemolytic uremic syndrome, and C3 glomerulopathy. Moreover, glomerular Ig deposits can lead to complement-driven nephropathies. Here we describe the discovery of a highly potent, reversible, and selective small-molecule inhibitor of factor B, a serine protease that drives the central amplification loop of the AP. Oral administration of the inhibitor prevents KRN-induced arthritis in mice and is effective upon prophylactic and therapeutic dosing in an experimental model of membranous nephropathy in rats. In addition, inhibition of factor B prevents complement activation in sera from C3 glomerulopathy patients and the hemolysis of human PNH erythrocytes. These data demonstrate the potential therapeutic value of using a factor B inhibitor for systemic treatment of complement-mediated diseases and provide a basis for its clinical development.


Assuntos
Fator B do Complemento/antagonistas & inibidores , Via Alternativa do Complemento/efeitos dos fármacos , Descoberta de Drogas/métodos , Fatores Imunológicos/farmacologia , Animais , Modelos Animais de Doenças , Glomerulonefrite Membranosa/fisiopatologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos Sprague-Dawley
9.
Cell Metab ; 29(4): 1003-1011.e4, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30773464

RESUMO

Serine is a substrate for nucleotide, NADPH, and glutathione (GSH) synthesis. Previous studies in cancer cells and lymphocytes have shown that serine-dependent one-carbon units are necessary for nucleotide production to support proliferation. Presently, it is unknown whether serine metabolism impacts the function of non-proliferative cells, such as inflammatory macrophages. We find that in macrophages, serine is required for optimal lipopolysaccharide (LPS) induction of IL-1ß mRNA expression, but not inflammasome activation. The mechanism involves a requirement for glycine, which is made from serine, to support macrophage GSH synthesis. Cell-permeable GSH, but not the one-carbon donor formate, rescues IL-1ß mRNA expression. Pharmacological inhibition of de novo serine synthesis in vivo decreased LPS induction of IL-1ß levels and improved survival in an LPS-driven model of sepsis in mice. Our study reveals that serine metabolism is necessary for GSH synthesis to support IL-1ß cytokine production.


Assuntos
Interleucina-1beta/biossíntese , Macrófagos/metabolismo , Serina/metabolismo , Animais , Células Cultivadas , Modelos Animais de Doenças , Feminino , Lipopolissacarídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/biossíntese , Sepse/induzido quimicamente , Sepse/metabolismo
10.
J Med Chem ; 61(4): 1622-1635, 2018 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-29400470

RESUMO

A noninvasive topical ocular therapy for the treatment of neovascular or "wet" age-related macular degeneration would provide a patient administered alternative to the current standard of care, which requires physician administered intravitreal injections. This manuscript describes a novel strategy for the use of in vivo models of choroidal neovascularization (CNV) as the primary means of developing SAR related to efficacy from topical administration. Ultimately, this effort led to the discovery of acrizanib (LHA510), a small-molecule VEGFR-2 inhibitor with potency and efficacy in rodent CNV models, limited systemic exposure after topical ocular administration, multiple formulation options, and an acceptable rabbit ocular PK profile.


Assuntos
Administração Tópica , Indóis/administração & dosagem , Pirazóis/administração & dosagem , Pirimidinas/administração & dosagem , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Degeneração Macular Exsudativa/tratamento farmacológico , Animais , Neovascularização de Coroide , Descoberta de Drogas , Indóis/farmacocinética , Indóis/uso terapêutico , Soluções Oftálmicas , Inibidores de Proteínas Quinases , Pirazóis/farmacocinética , Pirazóis/uso terapêutico , Pirimidinas/farmacocinética , Pirimidinas/uso terapêutico , Coelhos , Roedores , Relação Estrutura-Atividade
11.
Proc Natl Acad Sci U S A ; 114(43): 11404-11409, 2017 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-29073064

RESUMO

The enzyme serine hydroxymethyltransferse (SHMT) converts serine into glycine and a tetrahydrofolate-bound one-carbon unit. Folate one-carbon units support purine and thymidine synthesis, and thus cell growth. Mammals have both cytosolic SHMT1 and mitochondrial SHMT2, with the mitochondrial isozyme strongly up-regulated in cancer. Here we show genetically that dual SHMT1/2 knockout blocks HCT-116 colon cancer tumor xenograft formation. Building from a pyrazolopyran scaffold that inhibits plant SHMT, we identify small-molecule dual inhibitors of human SHMT1/2 (biochemical IC50 ∼ 10 nM). Metabolomics and isotope tracer studies demonstrate effective cellular target engagement. A cancer cell-line screen revealed that B-cell lines are particularly sensitive to SHMT inhibition. The one-carbon donor formate generally rescues cells from SHMT inhibition, but paradoxically increases the inhibitor's cytotoxicity in diffuse large B-cell lymphoma (DLBCL). We show that this effect is rooted in defective glycine uptake in DLBCL cell lines, rendering them uniquely dependent upon SHMT enzymatic activity to meet glycine demand. Thus, defective glycine import is a targetable metabolic deficiency of DLBCL.


Assuntos
Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Glicina Hidroximetiltransferase/antagonistas & inibidores , Glicina/metabolismo , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/metabolismo , Animais , Sítios de Ligação , Linhagem Celular Tumoral , Inibidores Enzimáticos/química , Feminino , Deleção de Genes , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Camundongos Nus , Modelos Moleculares , Estrutura Molecular , Neoplasias Experimentais/metabolismo , Conformação Proteica
13.
Cell Metab ; 25(2): 345-357, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28111214

RESUMO

During immune challenge, T lymphocytes engage pathways of anabolic metabolism to support clonal expansion and the development of effector functions. Here we report a critical role for the non-essential amino acid serine in effector T cell responses. Upon activation, T cells upregulate enzymes of the serine, glycine, one-carbon (SGOC) metabolic network, and rapidly increase processing of serine into one-carbon metabolism. We show that extracellular serine is required for optimal T cell expansion even in glucose concentrations sufficient to support T cell activation, bioenergetics, and effector function. Restricting dietary serine impairs pathogen-driven expansion of T cells in vivo, without affecting overall immune cell homeostasis. Mechanistically, serine supplies glycine and one-carbon units for de novo nucleotide biosynthesis in proliferating T cells, and one-carbon units from formate can rescue T cells from serine deprivation. Our data implicate serine as a key immunometabolite that directly modulates adaptive immunity by controlling T cell proliferative capacity.


Assuntos
Metaboloma , Serina/metabolismo , Linfócitos T/citologia , Linfócitos T/metabolismo , Animais , Carbono/metabolismo , Pontos de Checagem do Ciclo Celular , Proliferação de Células , Dieta , Metabolismo Energético , Espaço Extracelular/metabolismo , Glicina , Listeria monocytogenes/imunologia , Redes e Vias Metabólicas , Camundongos Endogâmicos C57BL , Nucleotídeos de Purina/biossíntese
14.
ACS Med Chem Lett ; 7(4): 357-62, 2016 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-27096041

RESUMO

Anti-VEGF therapy has been a clinically validated treatment of age-related macular degeneration (AMD). We have recently reported the discovery of indole based oral VEGFR-2 inhibitors that provide sustained ocular retention and efficacy in models of wet-AMD. We disclose herein the synthesis and the biological evaluation of a series of novel core replacements as an expansion of the reported indole based VEGFR-2 inhibitor series. Addition of heteroatoms to the existing core and/or rearranging the heteroatoms around the 6-5 bicyclic ring structure produced a series of compounds that generally retained good on-target potency and an improved solubility profile. The hERG affinity was proven not be dependent on the change in lipophilicity through alteration of the core structure. A serendipitous discovery led to the identification of a new indole-pyrimidine connectivity: from 5-hydroxy to 6-hydroxyindole with potentially vast implication on the in vitro/in vivo properties of this class of compounds.

15.
ACS Med Chem Lett ; 7(4): 363-7, 2016 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-27096042

RESUMO

Anti-VEGF therapy is a clinically validated treatment for age-related macular degeneration (AMD). We have recently reported the discovery of oral VEGFR-2 inhibitors that are selectively distributed to the ocular tissues. Herein we report a further development of those compounds and in particular the validation of the hypothesis that aminoheterocycles such as aminoisoxazoles and aminopyrazoles could also function as effective "hinge" binding moieties leading to a new class of KDR (kinase insert domain containing receptor) inhibitors.

16.
J Med Chem ; 58(23): 9273-86, 2015 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-26568411

RESUMO

The benefit of intravitreal anti-VEGF therapy in treating wet age-related macular degeneration (AMD) is well established. Identification of VEGFR-2 inhibitors with optimal ADME properties for an ocular indication provides opportunities for dosing routes beyond intravitreal injection. We employed a high-throughput in vivo screening strategy with rodent models of choroidal neovascularization and iterative compound design to identify VEGFR-2 inhibitors with potential to benefit wet AMD patients. These compounds demonstrate preferential ocular tissue distribution and efficacy after oral administration while minimizing systemic exposure.


Assuntos
Inibidores da Angiogênese/química , Inibidores da Angiogênese/uso terapêutico , Neovascularização de Coroide/tratamento farmacológico , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/uso terapêutico , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Degeneração Macular Exsudativa/tratamento farmacológico , Administração Oral , Inibidores da Angiogênese/administração & dosagem , Inibidores da Angiogênese/farmacocinética , Animais , Corioide/efeitos dos fármacos , Corioide/patologia , Neovascularização de Coroide/patologia , Feminino , Humanos , Injeções Intravítreas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/farmacocinética , Pirimidinas/administração & dosagem , Pirimidinas/química , Pirimidinas/farmacocinética , Pirimidinas/uso terapêutico , Ratos , Degeneração Macular Exsudativa/patologia
17.
J Med Chem ; 56(13): 5464-72, 2013 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-23738526

RESUMO

Glaucoma is a leading cause of vision loss and blindness, with increased intraocular pressure (IOP) a prominent risk factor. IOP can be efficaciously reduced by administration of topical agents. However, the repertoire of approved IOP-lowering drug classes is limited, and effective new alternatives are needed. Agonism of the cannabinoid receptors CB1/2 significantly reduces IOP clinically and experimentally. However, development of CB1/2 agonists has been complicated by the need to avoid cardiovascular and psychotropic side effects. 1 is a potent CB1/2 agonist that is highly excluded from the brain. In a phase I study, compound 1 eyedrops were well tolerated and generated an IOP-lowering trend but were limited in dose and exposure due to poor solubility and ocular absorption. Here we present an innovative strategy to rapidly identify compound 1 prodrugs that are efficiently metabolized to the parent compound for improved solubility and ocular permeability while maintaining low systemic exposures.


Assuntos
Soluções Oftálmicas/farmacologia , Pró-Fármacos/farmacologia , Receptor CB1 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/agonistas , Animais , Área Sob a Curva , Olho/metabolismo , Olho/fisiopatologia , Glaucoma/metabolismo , Glaucoma/fisiopatologia , Glaucoma/prevenção & controle , Humanos , Pressão Intraocular/efeitos dos fármacos , Masculino , Taxa de Depuração Metabólica , Modelos Químicos , Estrutura Molecular , Soluções Oftálmicas/síntese química , Soluções Oftálmicas/farmacocinética , Permeabilidade , Pró-Fármacos/síntese química , Pró-Fármacos/farmacocinética , Ratos , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/metabolismo
18.
Org Lett ; 13(2): 280-3, 2011 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-21141809

RESUMO

A convenient and efficient flow method for Ullmann condensations, Sonogashira couplings, and decarboxylation reactions using a commercially available copper tube flow reactor (CTFR) is described. The heated CTFR effects these transformations without added metals (e.g., Pd), ligands, or reagents, and in greater than 90% yield in most cases examined.


Assuntos
Derivados de Benzeno/síntese química , Química Orgânica/instrumentação , Cobre/química , Derivados de Benzeno/química , Química Orgânica/métodos , Técnicas de Química Combinatória , Descarboxilação , Indicadores e Reagentes , Estrutura Molecular
19.
Angew Chem Int Ed Engl ; 44(20): 3022-37, 2005 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-15800868

RESUMO

Five membered carbocycles are important building blocks for many biologically active molecules. Moreover, substituted cyclopentenones (e.g. cyclopentenone prostaglandins) exhibit characteristic biological activity. The efficiency and atom economy of the Pauson-Khand reaction render this process potentially one of the most attractive methods for the synthesis of such compounds. Although it was discovered in its intermolecular form, the scope of the intermolecular Pauson-Khand reaction has always been limited by the poor reactivity and selectivity of the alkene component. The past decade, especially the last three years, has seen concerted efforts to broaden the scope of this reaction. In this overview, we provide a comprehensive and critical coverage of the intermolecular Pauson-Khand reaction based on the reactivity characteristics of different classes of alkenes and a rationalization of successes and misfortunes in this area.


Assuntos
Alcenos/química , Alcinos/química , Cobalto/química , Ciclopentanos/química , Ciclopentanos/síntese química , Ciclopentanos/farmacologia , Substâncias Macromoleculares/química , Estrutura Molecular , Prostaglandinas/química , Prostaglandinas/farmacologia
20.
Chemistry ; 11(1): 69-80, 2004 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-15484182

RESUMO

Amino alcohols have been used to introduce non-racemic chirality into macrocycles using a modular approach that relies on a Heck macrocyclisation reaction. A wide variety of macrocycles have been synthesised, and their structures studied using X-ray crystallography and molecular modelling. A fragmentation reaction encountered during the use of (S)-1,1-dimethylvalinol revealed that carboxylic acids generate acylals under reaction conditions often used for Heck reactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...