Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
2.
NPJ Vaccines ; 8(1): 152, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37803013

RESUMO

A maternal vaccine to protect neonates against Group B Streptococcus invasive infection is an unmet medical need. Such a vaccine should ideally be offered during the third trimester of pregnancy and induce strong immune responses after a single dose to maximize the time for placental transfer of protective antibodies. A key target antigen is the capsular polysaccharide, an anti-phagocytic virulence factor that elicits protective antibodies when conjugated to carrier proteins. The most prevalent polysaccharide serotypes conjugated to tetanus or diphtheria toxoids have been tested in humans as monovalent and multivalent formulations, showing excellent safety profiles and immunogenicity. However, responses were suboptimal in unprimed individuals after a single shot, the ideal schedule for vaccination during the third trimester of pregnancy. In the present study, we obtained and optimized self-assembling virus-like particles conjugated to Group B Streptococcus capsular polysaccharides. The resulting glyco-nanoparticles elicited strong immune responses in mice already after one immunization, providing pre-clinical proof of concept for a single-dose vaccine.

3.
Int J Mol Sci ; 24(15)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37569427

RESUMO

The increasing diffusion of antimicrobial resistance (AMR) across more and more bacterial species emphasizes the urgency of identifying innovative treatment strategies to counter its diffusion. Pathogen infection prevention is among the most effective strategies to prevent the spread of both disease and AMR. Since their discovery, vaccines have been the strongest prophylactic weapon against infectious diseases, with a multitude of different antigen types and formulative strategies developed over more than a century to protect populations from different pathogens. In this review, we review the main characteristics of vaccine formulations in use and under development against AMR pathogens, focusing on the importance of administering multiple antigens where possible, and the challenges associated with their development and production. The most relevant antigen classes and adjuvant systems are described, highlighting their mechanisms of action and presenting examples of their use in clinical trials against AMR. We also present an overview of the analytical and formulative strategies for multivalent vaccines, in which we discuss the complexities associated with mixing multiple components in a single formulation. This review emphasizes the importance of combining existing knowledge with advanced technologies within a Quality by Design development framework to efficiently develop vaccines against AMR pathogens.

4.
NPJ Vaccines ; 8(1): 54, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37045859

RESUMO

The ability of Neisseria meningitidis Outer Membrane Vesicles (OMV) to induce protective responses in humans is well established and mainly attributed to Porin A (PorA). However, the contribution of additional protein antigens to protection remains to be elucidated. In this study we dissected the immunogenicity of antigens originating from the OMV component of the 4CMenB vaccine in mice and humans. We collected functional data on a panel of strains for which bactericidal responses to 4CMenB in infants was attributable to the OMV component and evaluated the role of 30 OMV-specific protein antigens in cross-coverage. By using tailor-made protein microarrays, the immunosignature of OMV antigens was determined. Three of these proteins, OpcA, NspA, and PorB, triggered mouse antibodies that were bactericidal against several N. meningitidis strains. Finally, by genetic deletion and/or serum depletion studies, we demonstrated the ability of OpcA and PorB to induce functional immune responses in infant sera after vaccination. In conclusion, while confirming the role of PorA in eliciting protective immunity, we identified two OMV antigens playing a key role in protection of infants vaccinated with the 4CMenB vaccine against different N. meningitidis serogroup B strains.

5.
Nat Commun ; 14(1): 816, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36781853

RESUMO

Combining optimized spike (S) protein-encoding mRNA vaccines to target multiple SARS-CoV-2 variants could improve control of the COVID-19 pandemic. We compare monovalent and bivalent mRNA vaccines encoding B.1.351 (Beta) and/or B.1.617.2 (Delta) SARS-CoV-2 S-protein in a transgenic mouse and a Wistar rat model. The blended low-dose bivalent mRNA vaccine contains half the mRNA of each respective monovalent vaccine, but induces comparable neutralizing antibody titres, enrichment of lung-resident memory CD8+ T cells, antigen-specific CD4+ and CD8+ responses, and protects transgenic female mice from SARS-CoV-2 lethality. The bivalent mRNA vaccine significantly reduces viral replication in both Beta- and Delta-challenged mice. Sera from bivalent mRNA vaccine immunized female Wistar rats also contain neutralizing antibodies against the B.1.1.529 (Omicron BA.1 and BA.5) variants. These data suggest that low-dose and fit-for-purpose multivalent mRNA vaccines encoding distinct S-proteins are feasible approaches for extending the coverage of vaccines for emerging and co-circulating SARS-CoV-2 variants.


Assuntos
Vacinas contra COVID-19 , COVID-19 , SARS-CoV-2 , Animais , Feminino , Camundongos , Ratos , Anticorpos Neutralizantes , Anticorpos Antivirais , Linfócitos T CD8-Positivos , COVID-19/prevenção & controle , Vacinas contra COVID-19/imunologia , Camundongos Transgênicos , Modelos Animais , Vacinas de mRNA/imunologia , Ratos Wistar , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Vacinas Combinadas/imunologia
6.
Vaccines (Basel) ; 11(2)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36851196

RESUMO

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) Omicron and its subvariants (BA.2, BA.4, BA.5) represented the most commonly circulating variants of concern (VOC) in the coronavirus disease 2019 (COVID-19) pandemic in 2022. Despite high vaccination rates with approved SARS-CoV-2 vaccines encoding the ancestral spike (S) protein, these Omicron subvariants have collectively resulted in increased viral transmission and disease incidence. This necessitates the development and characterization of vaccines incorporating later emerging S proteins to enhance protection against VOC. In this context, bivalent vaccine formulations may induce broad protection against VOC and potential future SARS-CoV-2 variants. Here, we report preclinical data for a lipid nanoparticle (LNP)-formulated RNActive® N1-methylpseudouridine (N1mΨ) modified mRNA vaccine (CV0501) based on our second-generation SARS-CoV-2 vaccine CV2CoV, encoding the S protein of Omicron BA.1. The immunogenicity of CV0501, alone or in combination with a corresponding vaccine encoding the ancestral S protein (ancestral N1mΨ), was first measured in dose-response and booster immunization studies performed in Wistar rats. Both monovalent CV0501 and bivalent CV0501/ancestral N1mΨ immunization induced robust neutralizing antibody titers against the BA.1, BA.2 and BA.5 Omicron subvariants, in addition to other SARS-CoV-2 variants in a booster immunization study. The protective efficacy of monovalent CV0501 against live SARS-CoV-2 BA.2 infection was then assessed in hamsters. Monovalent CV0501 significantly reduced SARS-CoV-2 BA.2 viral loads in the airways, demonstrating protection induced by CV0501 vaccination. CV0501 has now advanced into human Phase 1 clinical trials (ClinicalTrials.gov Identifier: NCT05477186).

7.
Infection ; 51(4): 981-991, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36547864

RESUMO

PURPOSE: Group B streptococcus (GBS) remains a leading cause of invasive disease, mainly sepsis and meningitis, in infants < 3 months of age and of mortality among neonates. This study, a major component of the European DEVANI project (Design of a Vaccine Against Neonatal Infections) describes clinical and important microbiological characteristics of neonatal GBS diseases. It quantifies the rate of antenatal screening and intrapartum antibiotic prophylaxis among cases and identifies risk factors associated with an adverse outcome. METHODS: Clinical and microbiological data from 153 invasive neonatal cases (82 early-onset [EOD], 71 late-onset disease [LOD] cases) were collected in eight European countries from mid-2008 to end-2010. RESULTS: Respiratory distress was the most frequent clinical sign at onset of EOD, while meningitis is found in > 30% of LOD. The study revealed that 59% of mothers of EOD cases had not received antenatal screening, whilst GBS was detected in 48.5% of screened cases. Meningitis was associated with an adverse outcome in LOD cases, while prematurity and the presence of cardiocirculatory symptoms were associated with an adverse outcome in EOD cases. Capsular-polysaccharide type III was the most frequent in both EOD and LOD cases with regional differences in the clonal complex distribution. CONCLUSIONS: Standardizing recommendations related to neonatal GBS disease and increasing compliance might improve clinical care and the prevention of GBS EOD. But even full adherence to antenatal screening would miss a relevant number of EOD cases, thus, the most promising prophylactic approach against GBS EOD and LOD would be a vaccine for maternal immunization.


Assuntos
Complicações Infecciosas na Gravidez , Infecções Estreptocócicas , Recém-Nascido , Lactente , Humanos , Feminino , Gravidez , Streptococcus agalactiae , Infecções Estreptocócicas/diagnóstico , Infecções Estreptocócicas/epidemiologia , Infecções Estreptocócicas/prevenção & controle , Antibioticoprofilaxia/efeitos adversos , Complicações Infecciosas na Gravidez/diagnóstico , Complicações Infecciosas na Gravidez/epidemiologia , Europa (Continente)/epidemiologia
8.
PLoS One ; 17(9): e0273322, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36112575

RESUMO

Recombinant protein-based vaccines are a valid and safer alternative to traditional vaccines based on live-attenuated or killed pathogens. However, the immune response of subunit vaccines is generally lower compared to that elicited by traditional vaccines and usually requires the use of adjuvants. The use of self-assembling protein nanoparticles, as a platform for vaccine antigen presentation, is emerging as a promising approach to enhance the production of protective and functional antibodies. In this work we demonstrated the successful repetitive antigen display of the C-terminal ß-barrel domain of factor H binding protein, derived from serogroup B Meningococcus on the surface of different self-assembling nanoparticles using genetic fusion. Six nanoparticle scaffolds were tested, including virus-like particles with different sizes, geometries, and physicochemical properties. Combining computational and structure-based rational design we were able generate antigen-fused scaffolds that closely aligned with three-dimensional structure predictions. The chimeric nanoparticles were produced as recombinant proteins in Escherichia coli and evaluated for solubility, stability, self-assembly, and antigen accessibility using a variety of biophysical methods. Several scaffolds were identified as being suitable for genetic fusion with the ß-barrel from fHbp, including ferritin, a de novo designed aldolase from Thermotoga maritima, encapsulin, CP3 phage coat protein, and the Hepatitis B core antigen. In conclusion, a systematic screening of self-assembling nanoparticles has been applied for the repetitive surface display of a vaccine antigen. This work demonstrates the capacity of rational structure-based design to develop new chimeric nanoparticles and describes a strategy that can be utilized to discover new nanoparticle-based approaches in the search for vaccines against bacterial pathogens.


Assuntos
Vacinas Meningocócicas , Nanopartículas , Neisseria meningitidis , Aldeído Liases , Antígenos , Vacinas Bacterianas , Proteínas de Transporte , Fator H do Complemento , Ferritinas , Antígenos do Núcleo do Vírus da Hepatite B , Nanopartículas/química , Neisseria meningitidis/genética , Proteínas Recombinantes , Vacinas Combinadas , Vacinas de Subunidades Antigênicas
9.
Vaccines (Basel) ; 10(8)2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35893831

RESUMO

GMMA are outer membrane vesicles (OMVs) released from Gram-negative bacteria genetically modified to enhance OMVs formation that have been shown to be optimal systems to enhance immunogenicity of protein antigens. Here, we selected Neisseria meningitidis factor H binding protein (fHbp) and used the conjugation chemistry as a tool to alter antigen orientation on GMMA. Indeed, fHbp was randomly linked to GMMA or selectively attached via the N-terminus to mimic native presentation of the protein on the bacterial surface. Interestingly, protein and peptide array analyses confirmed that antibodies induced by the selective and the random conjugates showed a pattern very similar to fHbp natively expressed on bacterial surfaces or to the recombinant protein mixed with GMMA, respectively. However, the two conjugates elicited antibodies with similar serum bactericidal activity against meningococcal strains, superior to the protein alone or physically mixed with GMMA. Presentation of fHbp on GMMA strongly enhances the functional immune response elicited by the protein but its orientation on the bacterial surface does not have an impact. This study demonstrates the flexibility of the GMMA platform as a display and delivery system for enhancing antigen immunogenicity and further supports the use of such promising technology for the development of effective vaccines.

10.
iScience ; 25(3): 103931, 2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35265810

RESUMO

Moraxella catarrhalis and nontypeable Haemophilus influenzae (NTHi) are pathogenic bacteria frequently associated with exacerbation of chronic obstructive pulmonary disease (COPD), whose hallmark is inflammatory oxidative stress. Neutrophils produce reactive oxygen species (ROS) which can boost antimicrobial response by promoting neutrophil extracellular traps (NET) and autophagy. Here, we showed that M. catarrhalis induces less ROS and NET production in differentiated HL-60 cells compared to NTHi. It is also able to actively interfere with these responses in chemically activated cells in a phagocytosis and opsonin-independent and contact-dependent manner, possibly by engaging host immunosuppressive receptors. M. catarrhalis subverts the autophagic pathway of the phagocytic cells and survives intracellularly. It also promotes the survival of NTHi which is otherwise susceptible to the host antimicrobial arsenal. In-depth understanding of the immune evasion strategies exploited by these two human pathogens could suggest medical interventions to tackle COPD and potentially other diseases in which they co-exist.

11.
Front Microbiol ; 13: 1106401, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36726564

RESUMO

Human cytomegaloviruses (HCMVs) employ many different mechanisms to escape and subvert the host immune system, including expression of the viral IgG Fcγ receptors (vFcγRs) RL11 (gp34), RL12 (gp95), RL13 (gpRL13), and UL119 (gp68) gene products. The role of vFcγRs in HCMV pathogenesis has been reported to operate in infected cells by interfering with IgG-mediated effector functions. We found that gp34 and gp68 are envelope proteins that bind and internalize human IgGs on the surface of infected cells. Internalized IgGs are then transported on the envelope of viral particles in a vFcR-dependent mechanism. This mechanism is also responsible for the incorporation on the virions of the anti-gH neutralizing antibody MSL-109. Intriguingly, we show that gp68 is responsible for MSL-109 incorporation, but it is dispensable for other anti-HCMV antibodies that do not need this function to be transported on mature virions. HCMV-infected cells grown in presence of anti-HCMV monoclonal antibodies generate a viral progeny still infective and possible to be neutralized. This is the first example of a virus carrying neutralizing IgGs on its surface and their possible role is discussed.

12.
J Virol ; 95(15): e0220720, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34011552

RESUMO

Heterodimers of glycoproteins H (gH) and L (gL) comprise a basal element of the viral membrane fusion machinery conserved across herpesviruses. In human cytomegalovirus (HCMV), the glycoprotein UL116 assembles onto gH at a position similar to that occupied by gL, forming a heterodimer that is incorporated into virions. Here, we show that UL116 promotes the expression of gH/gL complexes and is required for the efficient production of infectious cell-free virions. UL116-null mutants show a 10-fold defect in production of infectious cell-free virions from infected fibroblasts and epithelial cells. This defect is accompanied by reduced expression of two disulfide-linked gH/gL complexes that play crucial roles in viral entry: the heterotrimer of gH/gL with glycoprotein O (gO) and the pentameric complex of gH/gL with UL128, UL130, and UL131. Kifunensine, a mannosidase inhibitor that interferes with endoplasmic reticulum (ER)-associated degradation (ERAD) of terminally misfolded glycoproteins, restored levels of gH, gL, and gO in UL116-null-infected cells, indicating that constituents of HCMV gH complexes are unstable in the absence of UL116. Further, we find that gH/UL116 complexes are abundant in virions, since a major gH species not covalently linked to other glycoproteins, which has long been observed in the literature, is detected from wild-type but not UL116-null virions. Interestingly, UL116 coimmunoprecipitates with UL148, a viral ER-resident glycoprotein that attenuates ERAD of gO, and we observe elevated levels of UL116 in UL148-null virions. Collectively, our findings argue that UL116 is a chaperone for gH that supports the assembly, maturation, and incorporation of gH/gL complexes into virions. IMPORTANCE HCMV is a betaherpesvirus that causes dangerous opportunistic infections in immunocompromised patients as well as in the immune-naive fetus and preterm infants. The potential of the virus to enter new host cells is governed in large part by two alternative viral glycoprotein H (gH)/glycoprotein L (gL) complexes that play important roles in entry: gH/gL/gO and gH/gL/UL128-131. A recently identified virion gH complex, comprised of gH bound to UL116, adds a new layer of complexity to the mechanisms that contribute to HCMV infectivity. Here, we show that UL116 promotes the expression of gH/gL complexes and that UL116 interacts with the viral ER-resident glycoprotein UL148, a factor that supports the expression of gH/gL/gO. Overall, our results suggest that UL116 is a chaperone for gH. These findings have important implications for understanding HCMV cell tropism as well as for the development of vaccines against the virus.


Assuntos
Citomegalovirus/crescimento & desenvolvimento , Glicoproteínas de Membrana/metabolismo , Proteínas do Envelope Viral/metabolismo , Proteínas Virais de Fusão/metabolismo , Alcaloides/farmacologia , Linhagem Celular , Citomegalovirus/genética , Citomegalovirus/metabolismo , Infecções por Citomegalovirus/imunologia , Infecções por Citomegalovirus/patologia , Estresse do Retículo Endoplasmático/fisiologia , Inibidores Enzimáticos/farmacologia , Regulação Viral da Expressão Gênica/genética , Células HEK293 , Humanos , Proteínas Virais de Fusão/genética , Internalização do Vírus
13.
Front Microbiol ; 12: 630121, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33889136

RESUMO

Human cytomegalovirus (HCMV) relies in large part upon the viral membrane fusion glycoprotein B and two alternative gH/gL complexes, gH/gL/gO (Trimer) and gH/gL/UL128/UL130/UL131A (Pentamer) to enter into cells. The relative amounts of Trimer and Pentamer vary among HCMV strains and contribute to differences in cell tropism. Although the viral ER resident protein UL148 has been shown to interact with gH to facilitate gO incorporation, the mechanisms that favor the assembly and maturation of one complex over another remain poorly understood. HCMV virions also contain an alternative non-disulfide bound heterodimer comprised of gH and UL116 whose function remains unknown. Here, we show that disruption of HCMV gene UL116 causes infectivity defects of ∼10-fold relative to wild-type virus and leads to reduced expression of both gH/gL complexes in virions. Furthermore, gH that is not covalently bound to other viral glycoproteins, which are readily detected in wild-type HCMV virions, become undetectable in the absence of UL116 suggesting that the gH/UL116 complex is abundant in virions. We find evidence that UL116 and UL148 interact during infection indicating that the two proteins might cooperate to regulate the abundance of HCMV gH complexes. Altogether, these results are consistent with a role of UL116 as a chaperone for gH during the assembly and maturation of gH complexes in infected cells.

14.
Microb Cell Fact ; 20(1): 33, 2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33531008

RESUMO

BACKGROUND: The display of recombinant proteins on cell surfaces has a plethora of applications including vaccine development, screening of peptide libraries, whole-cell biocatalysts and biosensor development for diagnostic, industrial or environmental purposes. In the last decades, a wide variety of surface display systems have been developed for the exposure of recombinant proteins on the surface of Escherichia coli, such as autotransporters and outer membrane proteins. RESULTS: In this study, we assess three approaches for the surface display of a panel of heterologous and homologous mature lipoproteins in E. coli: four from Neisseria meningitidis and four from the host strain that are known to be localised in the inner leaflet of the outer membrane. Constructs were made carrying the sequences coding for eight mature lipoproteins, each fused to the delivery portion of three different systems: the autotransporter adhesin involved in diffuse adherence-I (AIDA-I) from enteropathogenic E. coli, the Lpp'OmpA chimaera and a truncated form of the ice nucleation protein (INP), InaK-NC (N-terminal domain fused with C-terminal one) from Pseudomonas syringae. In contrast to what was observed for the INP constructs, when fused to the AIDA-I or Lpp'OmpA, most of the mature lipoproteins were displayed on the bacterial surface both at 37 and 25 °C as demonstrated by FACS analysis, confocal and transmission electron microscopy. CONCLUSIONS: To our knowledge this is the first study that compares surface display systems using a number of passenger proteins. We have shown that the experimental conditions, including the choice of the carrier protein and the growth temperature, play an important role in the translocation of mature lipoproteins onto the bacterial surface. Despite all the optimization steps performed with the InaK-NC anchor motif, surface exposure of the passenger proteins used in this study was not achieved. For our experimental conditions, Lpp'OmpA chimaera has proved to be an efficient surface display system for the homologous passenger proteins although cell lysis and phenotype heterogeneity were observed. Finally, AIDA-I was found to be the best surface display system for mature lipoproteins (especially heterologous ones) in the E. coli host strain with no inhibition of growth and only limited phenotype heterogeneity.


Assuntos
Proteínas de Bactérias/metabolismo , Escherichia coli/metabolismo , Lipoproteínas/metabolismo , Proteínas de Bactérias/ultraestrutura , Membrana Celular/metabolismo , Escherichia coli/ultraestrutura , Engenharia Genética , Proteínas Recombinantes de Fusão/metabolismo
15.
PLoS Pathog ; 16(10): e1008882, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33007046

RESUMO

Neisseria meningitidis serogroup B (MenB) is the leading cause of meningococcal meningitis and sepsis in industrialized countries, with the highest incidence in infants and adolescents. Two recombinant protein vaccines that protect against MenB are now available (i.e. 4CMenB and MenB-fHbp). Both vaccines contain the Factor H Binding Protein (fHbp) antigen, which can bind the Human Factor H (fH), the main negative regulator of the alternative complement pathway, thus enabling bacterial survival in the blood. fHbp is present in meningococcal strains as three main variants which are immunologically distinct. Here we sought to obtain detailed information about the epitopes targeted by anti-fHbp antibodies induced by immunization with the 4CMenB multicomponent vaccine. Thirteen anti-fHbp human monoclonal antibodies (mAbs) were identified in a library of over 100 antibody fragments (Fabs) obtained from three healthy adult volunteers immunized with 4CMenB. Herein, the key cross-reactive mAbs were further characterized for antigen binding affinity, complement-mediated serum bactericidal activity (SBA) and the ability to inhibit binding of fH to live bacteria. For the first time, we identified a subset of anti-fHbp mAbs able to elicit human SBA against strains with all three variants and able to compete with human fH for fHbp binding. We present the crystal structure of fHbp v1.1 complexed with human antibody 4B3. The structure, combined with mutagenesis and binding studies, revealed the critical cross-reactive epitope. The structure also provided the molecular basis of competition for fH binding. These data suggest that the fH binding site on fHbp v1.1 can be accessible to the human immune system upon immunization, enabling elicitation of human mAbs broadly protective against MenB. The novel structural, biochemical and functional data are of great significance because the human vaccine-elicited mAbs are the first reported to inhibit the binding of fH to fHbp, and are bactericidal with human complement. Our studies provide molecular insights into the human immune response to the 4CMenB meningococcal vaccine and fuel the rationale for combined structural, immunological and functional studies when seeking deeper understanding of the mechanisms of action of human vaccines.


Assuntos
Anticorpos/imunologia , Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Meningite Meningocócica/imunologia , Vacinas Meningocócicas/administração & dosagem , Neisseria meningitidis/imunologia , Adulto , Anticorpos/sangue , Antígenos de Bactérias/imunologia , Proteínas de Bactérias/imunologia , Fator H do Complemento/imunologia , Fator H do Complemento/metabolismo , Humanos , Meningite Meningocócica/metabolismo , Meningite Meningocócica/microbiologia , Meningite Meningocócica/prevenção & controle
16.
Virology ; 540: 57-65, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31739185

RESUMO

Among the Herpesviridae, human cytomegalovirus (HCMV) owns the largest genome and displays a huge coding potential. Here, we characterized the UL5 gene product (pUL5) of the clinical isolate TR strain. The protein was predicted as a 166-amino-acid membrane protein with a theoretical mass of 19 kDa. Recombinant virus expressing pUL5 with a tag allowed the identification of two pUL5 non-glycosylated species of approximately 19 and 9 kDa, expressed with early and late kinetic respectively. Experiments in infection confirmed that the lower molecular weight species was translated from an internal ATG in the UL5 open reading frame. Confocal microscopy analysis showed that pUL5 localized within the assembly compartment, but is not incorporated in the virion, as shown by Western blot on purified viral particles. Finally, pull-down experiments coupled with mass spectrometry analysis identified IQGAP1 as a pUL5 interactor, giving new hints on possible roles of pUL5 during HCMV infection.


Assuntos
Infecções por Citomegalovirus/metabolismo , Infecções por Citomegalovirus/virologia , Citomegalovirus/fisiologia , Interações Hospedeiro-Patógeno , Proteínas Virais/metabolismo , Proteínas Ativadoras de ras GTPase/metabolismo , Sequência de Aminoácidos , Linhagem Celular , Células Cultivadas , Citomegalovirus/isolamento & purificação , Citomegalovirus/ultraestrutura , Regulação Viral da Expressão Gênica , Humanos , Fases de Leitura Aberta , Ligação Proteica , Transporte Proteico , RNA Viral , Transcrição Gênica
17.
FASEB J ; 33(11): 12099-12111, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31442074

RESUMO

The 4 component meningococcus B vaccine (4CMenB) vaccine is the first vaccine containing recombinant proteins licensed for the prevention of invasive meningococcal disease caused by meningococcal serogroup B strains. 4CMenB contains 3 main recombinant proteins, including the Neisseria meningitidis factor H binding protein (fHbp), a lipoprotein able to bind the human factor H. To date, over 1000 aa sequences of fHbp have been identified, and they can be divided into variant groups 1, 2, and 3, which are usually not crossprotective. Nevertheless, previous characterizations of a small set (n = 10) of mAbs generated in humans after 4CMenB immunization revealed 2 human Fabs (huFabs) (1A12, 1G3) with some crossreactivity for variants 1, 2, and 3. This unexpected result prompted us to examine a much larger set of human mAbs (n = 110), with the aim of better understanding the extent and nature of crossreactive anti-fHbp antibodies. In this study, we report an analysis of the human antibody response to fHbp, by the characterization of 110 huFabs collected from 3 adult vaccinees during a 6-mo study. Although the 4CMenB vaccine contains fHbp variant 1, 13 huFabs were also found to be crossreactive with variants 2 and 3. The crystal structure of the crossreactive huFab 1E6 in complex with fHbp variant 3 was determined, revealing a novel, highly conserved epitope distinct from the epitopes recognized by 1A12 or 1G3. Further, functional characterization shows that human mAb 1E6 is able to elicit rabbit, but not human, complement-mediated bactericidal activity against meningococci displaying fHbp from any of the 3 different variant groups. This functional and structural information about the human antibody response upon 4CMenB immunization contributes to further unraveling the immunogenic properties of fHbp. Knowledge gained about the epitope profile recognized by the human antibody repertoire could guide future vaccine design.-Bianchi, F., Veggi, D., Santini, L., Buricchi, F., Bartolini, E., Lo Surdo, P., Martinelli, M., Finco, O., Masignani, V., Bottomley, M. J., Maione, D., Cozzi, R. Cocrystal structure of meningococcal factor H binding protein variant 3 reveals a new crossprotective epitope recognized by human mAb 1E6.


Assuntos
Anticorpos Monoclonais/imunologia , Antígenos de Bactérias/imunologia , Proteínas de Bactérias/imunologia , Fator H do Complemento/imunologia , Epitopos/imunologia , Vacinas Meningocócicas/imunologia , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/metabolismo , Antígenos de Bactérias/genética , Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fator H do Complemento/genética , Fator H do Complemento/metabolismo , Cristalografia por Raios X , Epitopos/genética , Epitopos/metabolismo , Variação Genética , Humanos , Infecções Meningocócicas/microbiologia , Infecções Meningocócicas/prevenção & controle , Vacinas Meningocócicas/administração & dosagem , Modelos Moleculares , Neisseria meningitidis/efeitos dos fármacos , Neisseria meningitidis/imunologia , Neisseria meningitidis/fisiologia , Ligação Proteica , Conformação Proteica
18.
Vaccine ; 37(30): 4204-4213, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31227353

RESUMO

Self-amplifying mRNAs (SAM)-based vaccines have been shown to induce a robust immune response in various animal species against both viral and bacterial pathogens. Due to their synthetic nature and to the versatility of the manufacturing process, SAM technology may represent an attractive solution for rapidly producing novel vaccines, which is particularly critical in case of pandemic infections or diseases mediated by newly emerging pathogens. Recent published data support the hypothesis that Antigen Presenting Cells (APCs) are responsible for CD8+ T-cell priming after SAM vaccination, suggesting cross-priming as the key mechanism for antigen presentation by SAM vaccines. In our study we investigated the possibility to enhance the immune response induced in mice by a single immunization with SAM by increasing the recruitment of APCs at the site of injection. To enhance SAM immunogenicity, we selected murine granulocyte-macrophage colony-stimulating factor (GM-CSF) as a model chemoattractant for APCs, and developed a SAM-GM-CSF vector. We evaluated whether the use of SAM-GM-CSF in combination with a SAM construct encoding the Influenza A virus nucleoprotein (NP) would lead to an increase of APC recruitment and NP-specific immune response. We indeed observed that the administration of SAM-GM-CSF enhances the recruitment of APCs at the injection site. Consistently with our hypothesis, co-administration of SAM-GM-CSF with SAM-NP significantly improved the magnitude of NP-specific CD8+ T-cell response both in terms of frequency of cytotoxic antigen-specific CD8+ T-cells and their functional activity in vivo. Furthermore, co-immunization with SAM-GM-CSF and SAM-NP provided an increase in protection against a lethal challenge with influenza virus. In conclusion, we demonstrated that increased recruitment of APCs at the site of injection is associated with an enhanced effectiveness of SAM vaccination and might be a powerful tool to potentiate the efficacy of RNA vaccination.


Assuntos
Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , RNA Mensageiro/metabolismo , Animais , Células Apresentadoras de Antígenos/efeitos dos fármacos , Células Apresentadoras de Antígenos/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Influenza Humana/imunologia , Influenza Humana/prevenção & controle , Camundongos , Camundongos Endogâmicos C57BL
19.
Front Immunol ; 10: 114, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30792711

RESUMO

Background: Although the relevance of humoral immunity for protection against S. aureus skin and soft tissue infections (SSTIs) has been suggested by several animal and human studies, the question of which human antibodies may be protective has so far impeded the development of a safe and effective vaccine. Because most adults have developed certain anti-S. aureus antibodies due to S. aureus colonization or infection, we hypothesized that the titers of antibodies to S. aureus in uninfected controls would differ from those in infected patients and would also differ in infected patients from the time of acute infection to a 40-day convalescent serum. Methods: To test these hypotheses, we measured human antibody levels against a panel of 134 unique antigens comprising the S. aureus surfome and secretome in subjects with active culture-confirmed S. aureus SSTIs (cases) and in controls with no infection, using a novel S. aureus protein microarray. Results: Most S. aureus SSTI patients (n = 60) and controls (n = 142) had antibodies to many of the tested S. aureus antigens. Univariate analysis showed statistically weak differences in the IgG levels to some antigens in the SSTI patient (case) sera compared with controls. Antibody levels to most tested antigens did not increase comparing acute with 40-day serum. Multiple logistic regression identified a rich subset of antigens that, by their antibody levels, together correctly differentiated all cases from all controls. Conclusions: Antibodies directed against S. aureus antigens were present both in patients with S. aureus SSTIs and in uninfected control patients. We found that SSTI patients and controls could be distinguished only based on differences in antibody levels to many staphylococcal surface and secreted antigens. Our results demonstrate that in the studied population, the levels of anti-S. aureus antibodies appear largely fixed, suggesting that there may be some level of unresponsiveness to natural infection.


Assuntos
Anticorpos Antibacterianos/sangue , Imunoglobulina G/sangue , Dermatopatias Bacterianas/imunologia , Infecções dos Tecidos Moles/imunologia , Infecções Estafilocócicas/imunologia , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Dermatopatias Bacterianas/sangue , Infecções dos Tecidos Moles/sangue , Infecções Estafilocócicas/sangue , Staphylococcus aureus/imunologia , Adulto Jovem
20.
Vaccine ; 35(2): 361-368, 2017 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-27939014

RESUMO

Nucleic acid vaccines represent an attractive approach to vaccination, combining the positive attributes of both viral vectors and live-attenuated vaccines, without the inherent limitations of each technology. We have developed a novel technology, the Self-Amplifying mRNA (SAM) platform, which is based on the synthesis of self-amplifying mRNA formulated and delivered as a vaccine. SAM vaccines have been shown to stimulate robust innate and adaptive immune responses in small animals and non-human primates against a variety of viral antigens, thus representing a safe and versatile tool against viral infections. To assess whether the SAM technology could be used for a broader range of targets, we investigated the immunogenicity and efficacy of SAM vaccines expressing antigens from Group A (GAS) and Group B (GBS) Streptococci, as models of bacterial pathogens. Two prototype bacterial antigens (the double-mutated GAS Streptolysin-O (SLOdm) and the GBS pilus 2a backbone protein (BP-2a)) were successfully expressed by SAM vectors. Mice immunized with both vaccines produced significant amounts of fully functional serum antibodies. The antibody responses generated by SAM vaccines were capable of conferring consistent protection in murine models of GAS and GBS infections. Inclusion of a eukaryotic secretion signal or boosting with the recombinant protein resulted in higher specific-antibody levels and protection. Our results support the concept of using SAM vaccines as potential solution for a wide range of both viral and bacterial pathogens, due to the versatility of the manufacturing processes and the broad spectrum of elicited protective immune response.


Assuntos
Antígenos de Bactérias/imunologia , RNA Mensageiro/biossíntese , Infecções Estreptocócicas/prevenção & controle , Vacinas Estreptocócicas/imunologia , Streptococcus agalactiae/imunologia , Streptococcus pyogenes/imunologia , Animais , Anticorpos Antibacterianos/sangue , Antígenos de Bactérias/biossíntese , Antígenos de Bactérias/genética , Modelos Animais de Doenças , Feminino , Camundongos , RNA Mensageiro/genética , Vacinas Estreptocócicas/administração & dosagem , Vacinas Estreptocócicas/genética , Streptococcus agalactiae/genética , Streptococcus pyogenes/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...