Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Trends Ecol Evol ; 39(5): 467-478, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38105132

RESUMO

The movement of energy and nutrients through ecological communities represents the biological 'pulse' underpinning ecosystem functioning and services. However, energy and nutrient fluxes are inherently difficult to observe, particularly in high-diversity systems such as coral reefs. We review advances in the quantification of fluxes in coral reef fishes, focusing on four key frameworks: demographic modelling, bioenergetics, micronutrients, and compound-specific stable isotope analysis (CSIA). Each framework can be integrated with underwater surveys, enabling researchers to scale organismal processes to ecosystem properties. This has revealed how small fish support biomass turnover, pelagic subsidies sustain fisheries, and fisheries benefit human health. Combining frameworks, closing data gaps, and expansion to other aquatic ecosystems can advance understanding of how fishes contribute to ecosystem functions and services.


Assuntos
Recifes de Corais , Peixes , Cadeia Alimentar , Nutrientes , Animais , Peixes/fisiologia , Nutrientes/metabolismo , Metabolismo Energético
2.
Nat Clim Chang ; 13(11): 1242-1249, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37927330

RESUMO

Seafood is an important source of bioavailable micronutrients supporting human health, yet it is unclear how micronutrient production has changed in the past or how climate change will influence its availability. Here combining reconstructed fisheries databases and predictive models, we assess nutrient availability from fisheries and mariculture in the past and project their futures under climate change. Since the 1990s, availabilities of iron, calcium and omega-3 from seafood for direct human consumption have increased but stagnated for protein. Under climate change, nutrient availability is projected to decrease disproportionately in tropical low-income countries that are already highly dependent on seafood-derived nutrients. At 4 oC of warming, nutrient availability is projected to decline by ~30% by 2100 in low income countries, while at 1.5-2.0 oC warming, decreases are projected to be ~10%. We demonstrate the importance of effective mitigation to support nutritional security of vulnerable nations and global health equity.

3.
Proc Biol Sci ; 290(2008): 20231601, 2023 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-37788704

RESUMO

Coral reef fisheries supply nutritious catch to tropical coastal communities, where the quality of reef seafood is determined by both the rate of biomass production and nutritional value of reef fishes. Yet our understanding of reef fisheries typically uses targets of total reef fish biomass rather than individual growth (i.e. biomass production) and nutrient content (i.e. nutritional value of reef fish), limiting the ability of management to sustain the productivity of nutritious catches. Here, we use modelled growth coefficients and nutrient concentrations to develop a new metric of nutrient productivity of coral reef fishes. We then evaluate this metric with underwater visual surveys of reef fish assemblages from four tropical countries to examine nutrient productivity of reef fish food webs. Species' growth coefficients were associated with nutrients that vary with body size (calcium, iron, selenium and zinc), but not total nutrient density. When integrated with fish abundance data, we find that herbivorous species typically dominate standing biomass, biomass turnover and nutrient production on coral reefs. Such bottom-heavy trophic distributions of nutrients were consistent across gradients of fishing pressure and benthic composition. We conclude that management restrictions that promote sustainability of herbivores and other low trophic-level species can sustain biomass and nutrient production from reef fisheries that is critical to the food security of over 500 million people in the tropics.


Assuntos
Antozoários , Recifes de Corais , Humanos , Animais , Pesqueiros , Conservação dos Recursos Naturais , Biomassa , Nutrientes , Peixes , Ecossistema
4.
Nat Ecol Evol ; 6(12): 1808-1817, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36192542

RESUMO

The sustainability of coral reef fisheries is jeopardized by complex and interacting socio-ecological stressors that undermine their contribution to food and nutrition security. Climate change has emerged as one of the key stressors threatening coral reefs and their fish-associated services. How fish nutrient concentrations respond to warming oceans remains unclear but these responses are probably affected by both direct (metabolism and trophodynamics) and indirect (habitat and species range shifts) effects. Climate-driven coral habitat loss can cause changes in fish abundance and biomass, revealing potential winners and losers among major fisheries targets that can be predicted using ecological indicators and biological traits. A critical next step is to extend research focused on the quantity of available food (fish biomass) to also consider its nutritional quality, which is relevant to progress in the fields of food security and malnutrition. Biological traits are robust predictors of fish nutrient content and thus potentially indicate how climate-driven changes are expected to impact nutrient availability within future food webs on coral reefs. Here, we outline future research priorities and an anticipatory framework towards sustainable reef fisheries contributing to nutrition-sensitive food systems in a warming ocean.


Assuntos
Antozoários , Recifes de Corais , Animais , Mudança Climática , Antozoários/fisiologia , Pesqueiros , Peixes/fisiologia , Nutrientes
5.
Fish Fish (Oxf) ; 23(4): 800-811, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35912069

RESUMO

Wild-caught fish are a bioavailable source of nutritious food that, if managed strategically, could enhance diet quality for billions of people. However, optimising nutrient production from the sea has not been a priority, hindering development of nutrition-sensitive policies. With fisheries management increasingly effective at rebuilding stocks and regulating sustainable fishing, we can now begin to integrate nutritional outcomes within existing management frameworks. Here, we develop a conceptual foundation for managing fisheries for multispecies Maximum Nutrient Yield (mMNY). We empirically test our approach using size-based models of North Sea and Baltic Sea fisheries and show that mMNY is predicted by the relative contribution of nutritious species to total catch and their vulnerability to fishing, leading to trade-offs between catch and specific nutrients. Simulated nutrient yield curves suggest that vitamin D, which is deficient in Northern European diets, was underfished at fishing levels that returned maximum catch weights. Analysis of global catch data shows there is scope for nutrient yields from most of the world's marine fisheries to be enhanced through nutrient-sensitive fisheries management. With nutrient composition data now widely available, we expect our mMNY framework to motivate development of nutrient-based reference points in specific contexts, such as data-limited fisheries. Managing for mMNY alongside policies that promote access to fish could help close nutrient gaps for coastal populations, maximising the contribution of wild-caught fish to global food and nutrition security.

6.
Curr Biol ; 32(12): 2610-2620.e4, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35568029

RESUMO

Effective solutions to the ongoing "coral reef crisis" will remain limited until the underlying drivers of coral reef degradation are better understood. Here, we conduct a global-scale study of how four key metrics of ecosystem states and processes on coral reefs (top predator presence, reef fish biomass, trait diversity, and parrotfish scraping potential) are explained by 11 indicators based on key human-environment theories from the social sciences. Our global analysis of >1,500 reefs reveals three key findings. First, the proximity of the nearest market has the strongest and most consistent relationships with these ecosystem metrics. This finding is in keeping with a body of terrestrial research on how market accessibility shapes agricultural practices, but the integration of these concepts in marine systems is nascent. Second, our global study shows that resource conditions tend to display a n-shaped relationship with socioeconomic development. Specifically, the probabilities of encountering a top predator, fish biomass, and fish trait diversity were highest where human development was moderate but lower where development was either high or low. This finding contrasts with previous regional-scale research demonstrating an environmental Kuznets curve hypothesis (which predicts a U-shaped relationship between socioeconomic development and resource conditions). Third, together, our ecosystem metrics are best explained by the integration of different human-environment theories. Our best model includes the interactions between indicators from different theoretical perspectives, revealing how marine reserves can have different outcomes depending on how far they are from markets and human settlements, as well as the size of the surrounding human population.


Assuntos
Antozoários , Recifes de Corais , Animais , Biomassa , Conservação dos Recursos Naturais , Ecossistema , Pesqueiros , Peixes , Humanos
7.
Proc Biol Sci ; 289(1973): 20220162, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35440210

RESUMO

Increasing speed and magnitude of global change threaten the world's biodiversity and particularly coral reef fishes. A better understanding of large-scale patterns and processes on coral reefs is essential to prevent fish biodiversity decline but it requires new monitoring approaches. Here, we use environmental DNA metabarcoding to reconstruct well-known patterns of fish biodiversity on coral reefs and uncover hidden patterns on these highly diverse and threatened ecosystems. We analysed 226 environmental DNA (eDNA) seawater samples from 100 stations in five tropical regions (Caribbean, Central and Southwest Pacific, Coral Triangle and Western Indian Ocean) and compared those to 2047 underwater visual censuses from the Reef Life Survey in 1224 stations. Environmental DNA reveals a higher (16%) fish biodiversity, with 2650 taxa, and 25% more families than underwater visual surveys. By identifying more pelagic, reef-associated and crypto-benthic species, eDNA offers a fresh view on assembly rules across spatial scales. Nevertheless, the reef life survey identified more species than eDNA in 47 shared families, which can be due to incomplete sequence assignment, possibly combined with incomplete detection in the environment, for some species. Combining eDNA metabarcoding and extensive visual census offers novel insights on the spatial organization of the richest marine ecosystems.


Assuntos
Recifes de Corais , DNA Ambiental , Animais , Biodiversidade , Ecossistema , Peixes , Humanos
8.
One Earth ; 5(1): 98-108, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35128392

RESUMO

Climate change is transforming coral reefs, threatening supply of essential dietary micronutrients from small-scale fisheries to tropical coastal communities. Yet the nutritional value of reef fisheries and climate impacts on micronutrient availability remain unclear, hindering efforts to sustain food and nutrition security. Here, we measure nutrient content in coral reef fishes in Seychelles and show that reef fish are important sources of selenium and zinc and contain levels of calcium, iron, and omega-3 fatty acids comparable with other animal-source foods. Using experimental fishing, we demonstrate that iron and zinc are enriched in fishes caught on regime-shifted macroalgal habitats, whereas selenium and omega-3 varied among species. We find substantial increases in nutrients available to fisheries over two decades following coral bleaching, particularly for iron and zinc after macroalgal regime shifts. Our findings indicate that, if managed sustainably, coral reef fisheries could remain important micronutrient sources along tropical coastlines despite escalating climate impacts.

9.
Nat Food ; 3(10): 851-861, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-37117898

RESUMO

Injustices are prevalent in food systems, where the accumulation of vast wealth is possible for a few, yet one in ten people remain hungry. Here, for 194 countries we combine aquatic food production, distribution and consumption data with corresponding national policy documents and, drawing on theories of social justice, explore whether barriers to participation explain unequal distributions of benefits. Using Bayesian models, we find economic and political barriers are associated with lower wealth-based benefits; countries produce and consume less when wealth, formal education and voice and accountability are lacking. In contrast, social barriers are associated with lower welfare-based benefits; aquatic foods are less affordable where gender inequality is greater. Our analyses of policy documents reveal a frequent failure to address political and gender-based barriers. However, policies linked to more just food system outcomes centre principles of human rights, specify inclusive decision-making processes and identify and challenge drivers of injustice.

10.
Nat Food ; 3(12): 1075-1084, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-37118295

RESUMO

Wild-caught fish provide an irreplaceable source of essential nutrients in food-insecure places. Fishers catch thousands of species, yet the diversity of aquatic foods is often categorized homogeneously as 'fish', obscuring an understanding of which species supply affordable, nutritious and abundant food. Here, we use catch, economic and nutrient data on 2,348 species to identify the most affordable and nutritious fish in 39 low- and middle-income countries. We find that a 100 g portion of fish cost between 10 and 30% of the cheapest daily diet, with small pelagic fish (herring, sardine, anchovy) being the cheapest nutritious fish in 72% of countries. In sub-Saharan Africa, where nutrient deficiencies are rising, <20% of small pelagic catch would meet recommended dietary fish intakes for all children (6 months to 4 years old) living near to water bodies. Nutrition-sensitive policies that ensure local supplies and promote consumption of wild-caught fish could help address nutrient deficiencies in vulnerable populations.

11.
Ecol Evol ; 11(21): 14630-14643, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34765130

RESUMO

Quantifying fish species diversity in rich tropical marine environments remains challenging. Environmental DNA (eDNA) metabarcoding is a promising tool to face this challenge through the filtering, amplification, and sequencing of DNA traces from water samples. However, because eDNA concentration is low in marine environments, the reliability of eDNA to detect species diversity can be limited. Using an eDNA metabarcoding approach to identify fish Molecular Taxonomic Units (MOTUs) with a single 12S marker, we aimed to assess how the number of sampling replicates and filtered water volume affect biodiversity estimates. We used a paired sampling design of 30 L per replicate on 68 reef transects from 8 sites in 3 tropical regions. We quantified local and regional sampling variability by comparing MOTU richness, compositional turnover, and compositional nestedness. We found strong turnover of MOTUs between replicated pairs of samples undertaken in the same location, time, and conditions. Paired samples contained non-overlapping assemblages rather than subsets of one another. As a result, non-saturated localized diversity accumulation curves suggest that even 6 replicates (180 L) in the same location can underestimate local diversity (for an area <1 km). However, sampling regional diversity using ~25 replicates in variable locations (often covering 10 s of km) often saturated biodiversity accumulation curves. Our results demonstrate variability of diversity estimates possibly arising from heterogeneous distribution of eDNA in seawater, highly skewed frequencies of eDNA traces per MOTU, in addition to variability in eDNA processing. This high compositional variability has consequences for using eDNA to monitor temporal and spatial biodiversity changes in local assemblages. Avoiding false-negative detections in future biomonitoring efforts requires increasing replicates or sampled water volume to better inform management of marine biodiversity using eDNA.

12.
Curr Biol ; 31(18): 4132-4138.e3, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34289388

RESUMO

Fish are rich in bioavailable micronutrients, such as zinc and iron, deficiencies of which are a global food security concern.1,2 Global marine fisheries yields are threatened by climate change and overfishing,3,4 yet understanding of how these stressors affect the nutrients available from fisheries is lacking.5,6 Here, using global assessments of micronutrient content2 and fisheries catch data,7 we investigate how the vulnerability status of marine fish species8,9 may translate into vulnerability of micronutrient availability at scales of both individual species and entire fishery assemblages for 157 countries. We further quantify the micronutrient evenness of catches to identify countries where interventions can optimize micronutrient supply. Our global analysis, including >800 marine fish species, reveals that, at a species level, micronutrient availability and vulnerability to both climate change and overfishing varies greatly, with tropical species displaying a positive co-tolerance, indicating greater persistence to both stressors at a community level.10 Global fisheries catches had relatively low nutritional vulnerability to fishing. Catches with higher species richness tend to be nutrient dense and evenly distributed but are more vulnerable to climate change, with 40% of countries displaying high vulnerability. Countries with high prevalence of inadequate micronutrient intake tend to have the most nutrient-dense catches, but these same fisheries are highly vulnerable to climate change, with relatively lower capacity to adapt.11 Our analysis highlights the need to consolidate fisheries, climate, and food policies to secure the sustainable contribution of fish-derived micronutrients to food and nutrition security.


Assuntos
Mudança Climática , Pesqueiros , Animais , Conservação dos Recursos Naturais , Ecossistema , Peixes , Ferro , Micronutrientes/análise
13.
Nat Commun ; 11(1): 4438, 2020 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-32895381

RESUMO

Many islands are biodiversity hotspots but also extinction epicenters. In addition to strong cultural connections to nature, islanders derive a significant part of their economy and broader wellbeing from this biodiversity. Islands are thus considered as the socio-ecosystems most vulnerable to species and habitat loss. Yet, the extent and key correlates of protected area coverage on islands is still unknown. Here we assess the relative influence of climate, geography, habitat diversity, culture, resource capacity, and human footprint on terrestrial and marine protected area coverage across 2323 inhabited islands globally. We show that, on average, 22% of terrestrial and 13% of marine island areas are under protection status, but that half of all islands have no protected areas. Climate, diversity of languages, human population density and development are strongly associated with differences observed in protected area coverage among islands. Our study suggests that economic development and population growth may critically limit the amount of protection on islands.

14.
Science ; 368(6488): 307-311, 2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-32299952

RESUMO

The worldwide decline of coral reefs necessitates targeting management solutions that can sustain reefs and the livelihoods of the people who depend on them. However, little is known about the context in which different reef management tools can help to achieve multiple social and ecological goals. Because of nonlinearities in the likelihood of achieving combined fisheries, ecological function, and biodiversity goals along a gradient of human pressure, relatively small changes in the context in which management is implemented could have substantial impacts on whether these goals are likely to be met. Critically, management can provide substantial conservation benefits to most reefs for fisheries and ecological function, but not biodiversity goals, given their degraded state and the levels of human pressure they face.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Recifes de Corais , Pesqueiros , Animais , Peixes , Objetivos , Atividades Humanas , Humanos
16.
PLoS Biol ; 17(8): e3000366, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31386657

RESUMO

Since the 1950s, industrial fisheries have expanded globally, as fishing vessels are required to travel further afield for fishing opportunities. Technological advancements and fishery subsidies have granted ever-increasing access to populations of sharks, tunas, billfishes, and other predators. Wilderness refuges, defined here as areas beyond the detectable range of human influence, are therefore increasingly rare. In order to achieve marine resources sustainability, large no-take marine protected areas (MPAs) with pelagic components are being implemented. However, such conservation efforts require knowledge of the critical habitats for predators, both across shallow reefs and the deeper ocean. Here, we fill this gap in knowledge across the Indo-Pacific by using 1,041 midwater baited videos to survey sharks and other pelagic predators such as rainbow runner (Elagatis bipinnulata), mahi-mahi (Coryphaena hippurus), and black marlin (Istiompax indica). We modeled three key predator community attributes: vertebrate species richness, mean maximum body size, and shark abundance as a function of geomorphology, environmental conditions, and human pressures. All attributes were primarily driven by geomorphology (35%-62% variance explained) and environmental conditions (14%-49%). While human pressures had no influence on species richness, both body size and shark abundance responded strongly to distance to human markets (12%-20%). Refuges were identified at more than 1,250 km from human markets for body size and for shark abundance. These refuges were identified as remote and shallow seabed features, such as seamounts, submerged banks, and reefs. Worryingly, hotpots of large individuals and of shark abundance are presently under-represented within no-take MPAs that aim to effectively protect marine predators, such as the British Indian Ocean Territory. Population recovery of predators is unlikely to occur without strategic placement and effective enforcement of large no-take MPAs in both coastal and remote locations.


Assuntos
Organismos Aquáticos/crescimento & desenvolvimento , Conservação dos Recursos Naturais/métodos , Comportamento Predatório/fisiologia , Animais , Tamanho Corporal , Recifes de Corais , Ecossistema , Abastecimento de Alimentos/métodos , Oceano Pacífico , Alimentos Marinhos , Meio Selvagem
17.
Nat Ecol Evol ; 3(9): 1341-1350, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31406279

RESUMO

Without drastic efforts to reduce carbon emissions and mitigate globalized stressors, tropical coral reefs are in jeopardy. Strategic conservation and management requires identification of the environmental and socioeconomic factors driving the persistence of scleractinian coral assemblages-the foundation species of coral reef ecosystems. Here, we compiled coral abundance data from 2,584 Indo-Pacific reefs to evaluate the influence of 21 climate, social and environmental drivers on the ecology of reef coral assemblages. Higher abundances of framework-building corals were typically associated with: weaker thermal disturbances and longer intervals for potential recovery; slower human population growth; reduced access by human settlements and markets; and less nearby agriculture. We therefore propose a framework of three management strategies (protect, recover or transform) by considering: (1) if reefs were above or below a proposed threshold of >10% cover of the coral taxa important for structural complexity and carbonate production; and (2) reef exposure to severe thermal stress during the 2014-2017 global coral bleaching event. Our findings can guide urgent management efforts for coral reefs, by identifying key threats across multiple scales and strategic policy priorities that might sustain a network of functioning reefs in the Indo-Pacific to avoid ecosystem collapse.


Assuntos
Antozoários , Recifes de Corais , Animais , Clima , Mudança Climática , Ecossistema , Humanos
18.
Proc Biol Sci ; 285(1883)2018 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-30051872

RESUMO

Determining whether many functionally complementary species or only a subset of key species are necessary to maintain ecosystem functioning and services is a critical question in community ecology and biodiversity conservation. Identifying such key species remains challenging, especially in the tropics where many species co-occur and can potentially support the same or different processes. Here, we developed a new community-wide scan (CWS) approach, analogous to the genome-wide scan, to identify fish species that significantly contribute, beyond the socio-environmental and species richness effects, to the biomass and coral cover on Indo-Pacific reefs. We found that only a limited set of species (51 out of approx. 400, approx. 13%), belonging to various functional groups and evolutionary lineages, are strongly and positively associated with fish biomass and live coral cover. Many of these species have not previously been identified as functionally important, and thus may be involved in unknown, yet important, biological mechanisms that help sustain healthy and productive coral reefs. CWS has the potential to reveal species that are key to ecosystem functioning and services and to guide management strategies as well as new experiments to decipher underlying causal ecological processes.


Assuntos
Antozoários , Biodiversidade , Recifes de Corais , Peixes , Animais , Conservação dos Recursos Naturais , Ilhas do Oceano Índico , Ilhas do Pacífico
19.
Proc Natl Acad Sci U S A ; 115(27): E6116-E6125, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29915066

RESUMO

Coral reefs provide ecosystem goods and services for millions of people in the tropics, but reef conditions are declining worldwide. Effective solutions to the crisis facing coral reefs depend in part on understanding the context under which different types of conservation benefits can be maximized. Our global analysis of nearly 1,800 tropical reefs reveals how the intensity of human impacts in the surrounding seascape, measured as a function of human population size and accessibility to reefs ("gravity"), diminishes the effectiveness of marine reserves at sustaining reef fish biomass and the presence of top predators, even where compliance with reserve rules is high. Critically, fish biomass in high-compliance marine reserves located where human impacts were intensive tended to be less than a quarter that of reserves where human impacts were low. Similarly, the probability of encountering top predators on reefs with high human impacts was close to zero, even in high-compliance marine reserves. However, we find that the relative difference between openly fished sites and reserves (what we refer to as conservation gains) are highest for fish biomass (excluding predators) where human impacts are moderate and for top predators where human impacts are low. Our results illustrate critical ecological trade-offs in meeting key conservation objectives: reserves placed where there are moderate-to-high human impacts can provide substantial conservation gains for fish biomass, yet they are unlikely to support key ecosystem functions like higher-order predation, which is more prevalent in reserve locations with low human impacts.


Assuntos
Biomassa , Conservação dos Recursos Naturais , Recifes de Corais , Peixes/fisiologia , Cadeia Alimentar , Animais , Humanos
20.
Ecol Lett ; 20(4): 554-557, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28295993

RESUMO

Sobral et al. (Ecology Letters, 19, 2016, 1091) reported that the loss of bird functional and phylogenetic diversity due to species extinctions was not compensated by exotic species introductions. Here, we demonstrate that the reported changes in biodiversity were underestimated because of methodological pitfalls.


Assuntos
Biodiversidade , Filogenia , Ecologia , Extinção Biológica , Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...