Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Mar Environ Res ; 163: 105228, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33302156

RESUMO

Microphytobenthos is most often the primary source of carbon for coastal soft-sediment communities, especially in intertidal and shallow subtidal environments. The influence of benthic macrofaunal organisms on microphytobenthic biomass, spatial distribution and photosynthetic capacities is not only resulting from their feeding intensity but also indirectly from their bioturbation activity, which regulates nutrient fluxes and sediment mixing. This study compares the impact of two species (Hediste diversicolor and Scrobicularia plana) that dominate macrofaunal communities in estuarine intertidal mudflats on microphytobenthic biomass and photosynthetic activity. Imaging-PAM fluorescence was used to non-invasively map the development of microphytobenthic biomass and to assess its spatial extent. Our results showed that, due to intense deposit feeding, Scrobicularia plana quickly limited microphytobenthos growth and photosynthetic activity, even at low density (<250 ind m-2). In contrast, the negative impact of Hediste diversicolor on microphytobenthos development due to direct consumption was very low. Thereby, the stimulation of nutrient fluxes at the sediment-water interface resulting from bioirrigation seems to enhance microphytobenthos growth and photosynthesis.


Assuntos
Bivalves , Poliquetos , Animais , Biomassa , Ecossistema , Sedimentos Geológicos , Fotossíntese
3.
Front Microbiol ; 11: 604979, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33343548

RESUMO

Nitrogen availability often limits biological productivity in marine systems, where inorganic nitrogen, such as ammonium is assimilated into the food web by bacteria and photoautotrophic eukaryotes. Recently, ammonium assimilation was observed in kleptoplast-containing protists of the phylum foraminifera, possibly via the glutamine synthetase/glutamate synthase (GS/GOGAT) assimilation pathway imported with the kleptoplasts. However, it is not known if the ubiquitous and diverse heterotrophic protists have an innate ability for ammonium assimilation. Using stable isotope incubations (15N-ammonium and 13C-bicarbonate) and combining transmission electron microscopy (TEM) with quantitative nanoscale secondary ion mass spectrometry (NanoSIMS) imaging, we investigated the uptake and assimilation of dissolved inorganic ammonium by two heterotrophic foraminifera; a non-kleptoplastic benthic species, Ammonia sp., and a planktonic species, Globigerina bulloides. These species are heterotrophic and not capable of photosynthesis. Accordingly, they did not assimilate 13C-bicarbonate. However, both species assimilated dissolved 15N-ammonium and incorporated it into organelles of direct importance for ontogenetic growth and development of the cell. These observations demonstrate that at least some heterotrophic protists have an innate cellular mechanism for inorganic ammonium assimilation, highlighting a newly discovered pathway for dissolved inorganic nitrogen (DIN) assimilation within the marine microbial loop.

4.
Mar Environ Res ; 162: 105147, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33027713

RESUMO

Benthic organisms, in particular bioturbators, can influence erosion processes either by affecting sediment roughness through their mere presence and/or activities, or by modulating sediment characteristics (e.g., silt content, granulometry), thus altering its erodibility. To date, it was not possible to distinguish the influence of bioturbating species on sediment roughness from their impact on sediment erodibility. Consequently, uncertainties remain regarding the role played by benthic species on sediment dynamics. In this study, we used a canal flume which allows to record the bed shear stress at the surface of a non-cohesive sediment (4% of mud) during erosion experiments, thus allowing to disentangle the influence of bioturbators, here the common cockle Cerastoderma edule, on the two erosion mechanisms. In order to assess the influence of bioturbators on sediment stability in different environmental situations, we additionally tested for the effects of three factors, i.e. bivalve density, availability of suspended food (i.e. phytoplankton presence) and microphytobenthos (MPB) occurrence, which may modulate the behavior of cockles. We observed that cockles promote the erosion of the sediment surficial layer by increasing its roughness as a consequence of their sediment reworking activity and/or presence at the sediment surface (emerging shell). In contrast, we calculated similar critical bed shear stress for erosion with and without bivalves suggesting that cockles have a minor influence on the erodibility of non-cohesive substrates with a low silt content. The destabilizing effect of cockles increased with the bivalve density whereas it was attenuated by the presence of phytoplankton. We hypothesize that the magnitude of cockles' bioturbation activity was lower when a high proportion of suspended food is available. High concentrations of suspended food may also have enhanced the filtration and biodeposition rates of cockles, thus rapidly leading to the 'muddification' of the sediment bed and consequently counteracting with the own destabilizing effect of the bivalves. Finally, the sole presence of MPB did not significantly affect the resuspension dynamics of non-cohesive sediments with a low proportion of mud.


Assuntos
Bivalves , Cardiidae , Animais , Sedimentos Geológicos , Alimentos Marinhos
5.
Mar Environ Res ; 158: 104931, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32501263

RESUMO

Coastal habitats provide many important ecosystem services. The substantial role of shellfish in delivering ecosystem services is increasingly recognised, usually with a focus on cultured species, but wild-harvested bivalve species have largely been ignored. This study aimed to collate evidence and data to demonstrate the substantial role played by Europe's main wild-harvested bivalve species, the common cockle Cerastoderma edule, and to assess the ecosystem services that cockles provide. Data and information are synthesised from five countries along the Atlantic European coast with a long history of cockle fisheries. The cockle helps to modify habitat and support biodiversity, and plays a key role in the supporting services on which many of the other services depend. As well as providing food for people, cockles remove nitrogen, phosphorus and carbon from the marine environment, and have a strong cultural influence in these countries along the Atlantic coast. Preliminary economic valuation of some of these services in a European context is provided, and key knowledge gaps identified. It is concluded that the cockle has the potential to become (i) an important focus of conservation and improved sustainable management practices in coastal areas and communities, and (ii) a suitable model species to study the integration of cultural ecosystem services within the broader application of 'ecosystem services'.


Assuntos
Bivalves , Cardiidae , Ecossistema , Animais , Europa (Continente) , Frutos do Mar
6.
Sci Total Environ ; 733: 139307, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32454293

RESUMO

In coastal environments, bioturbators greatly influence the physical and biogeochemical properties of sediments with consequences for central ecological processes such as erosion dynamics. In addition to their direct impact on sediment stability, bioturbators can have an impact on sediment erosion processes by modulating the growth of microphytobenthic organisms that stabilise the surface layer of sediments. The direct and indirect influences of bioturbators on sediment dynamics depend on the magnitude of their activity and inherently on their physiological state. Bioturbators are infected by various parasites, which have a substantial impact on their physiology and behaviour. However, the knock-on effects of parasites on key ecosystem functions like sediment dynamics remain poorly studied. We conducted flume experiments to investigate the indirect influence of the trematode Bucephalus minimus parasitising the common cockle Cerastoderma edule on the dynamics of sandy sediments enriched or not with microphytobenthos (MPB). Cockles modified bed roughness, sediment surface erodibility and hence destabilised sandy sediments. In sediments not enriched with MPB, both unparasitised and parasitised organisms had a similar impact on the stability of sandy sediments. In contrast, parasitism slightly reduced the destabilisation effect of cockles in MPB-enriched sediments. In the latter, parasitised cockles did not interfere with MPB growth whereas unparasitised organisms constrained the microalgae development. However, the enrichment of the surface layers of sandy sediments with MPB did not modulate the erosion dynamics of these environments. Thus, the lower destabilisation effect of parasitised cockles was not here linked to a stabilisation effect of MPB. When standardised for length, parasitised cockles were lighter than unparasitised organisms. Weakened cockles may have had a lower bioturbation potential than unparasitised conspecifics. If so, the influence parasitised cockles had on sediment erodibility and sediment roughness may have been reduced. The absence of a parasitism effect on the dynamics of MPB-unenriched sediments remains nonetheless unclear.


Assuntos
Cardiidae , Trematódeos , Animais , Ecossistema , Sedimentos Geológicos , Interações Hospedeiro-Parasita , Alimentos Marinhos
7.
J Anim Ecol ; 89(9): 2192-2205, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32271950

RESUMO

Although parasites represent a substantial part of marine communities' biomass and diversity, their influence on ecosystem functioning, especially via the modification of host behaviour, remains largely unknown. Here, we explored the effects of the bopyrid ectoparasite Gyge branchialis on the engineering activities of the thalassinid crustacean Upogebia pusilla and the cascading effects on intertidal ecosystem processes (e.g. sediment bioturbation) and functions (e.g. nutrient regeneration). Laboratory experiments revealed that the overall activity level of parasitized mud shrimp is reduced by a factor 3.3 due to a decrease in time allocated to burrowing and ventilating activities (by factors 1.9 and 2.9, respectively). Decrease in activity level led to strong reductions of bioturbation rates and biogeochemical fluxes at the sediment-water interface. Given the world-wide distribution of mud shrimp and their key role in biogeochemical processes, parasite-mediated alteration of their engineering behaviour has undoubtedly broad ecological impacts on marine coastal systems functioning. Our results illustrate further the need to consider host-parasite interactions (including trait-mediated indirect effects) when assessing the contribution of species to ecosystem properties, functions and services.


Assuntos
Decápodes , Isópodes , Parasitos , Animais , Ecossistema , Interações Hospedeiro-Parasita
8.
Environ Microbiol ; 21(1): 125-141, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30277305

RESUMO

The assimilation of inorganic compounds in foraminiferal metabolism compared to predation or organic matter assimilation is unknown. Here, we investigate possible inorganic-compound assimilation in Nonionellina labradorica, a common kleptoplastidic benthic foraminifer from Arctic and North Atlantic sublittoral regions. The objectives were to identify the source of the foraminiferal kleptoplasts, assess their photosynthetic functionality in light and darkness and investigate inorganic nitrogen and sulfate assimilation. We used DNA barcoding of a ~ 830 bp fragment from the SSU rDNA to identify the kleptoplasts and correlated transmission electron microscopy and nanometre-scale secondary ion mass spectrometry (TEM-NanoSIMS) isotopic imaging to study 13 C-bicarbonate, 15 N-ammonium and 34 S-sulfate uptake. In addition, respiration rate measurements were determined to assess the response of N. labradorica to light. The DNA sequences established that over 80% of the kleptoplasts belonged to Thalassiosira (with 96%-99% identity), a cosmopolitan planktonic diatom. TEM-NanoSIMS imaging revealed degraded cytoplasm and an absence of 13 C assimilation in foraminifera exposed to light. Oxygen measurements showed higher respiration rates under light than dark conditions, and no O2 production was detected. These results indicate that the photosynthetic pathways in N. labradorica are not functional. Furthermore, N. labradorica assimilated both 15 N-ammonium and 34 S-sulfate into its cytoplasm, which suggests that foraminifera might have several ammonium or sulfate assimilation pathways, involving either the kleptoplasts or bona fide foraminiferal pathway(s) not yet identified.


Assuntos
Carbono/metabolismo , Ecossistema , Foraminíferos/metabolismo , Nitrogênio/metabolismo , Enxofre/metabolismo , Citoplasma/metabolismo , Foraminíferos/classificação , Foraminíferos/genética , Foraminíferos/efeitos da radiação , Luz , Fotossíntese , Filogenia
9.
Aquat Toxicol ; 204: 46-58, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30189350

RESUMO

Mud shrimp are considered as among the most influential ecosystem engineers in marine soft bottom environments because of their significant bioturbation activity and their high density. These organisms play a key role on the physical structure of sediments through intense sediment reworking activity and also deeply influence geochemical properties of sediments via frequent bioirrigation events. The influence that mud shrimp have on the environment is related to the magnitude of bioturbation processes and subsequently depends on their physiological condition. In natural environments, several factors act together and influence the well-being of organisms. Among them, the deleterious role of parasites on the physiology and the behavior of their host is well established. Aquatic organisms are also subject to pollutants released by anthropogenic activities. However, the effect of both stressors on the fitness and bioturbation activity of mud shrimp has never been investigated yet. We conducted a 14-day ex-situ experiment to evaluate the influence of trace metal contamination (cadmium Cd) and parasitism infestation on the gene expression (molecular endpoint) and sediment reworking activity (behavioral endpoint) of the mud shrimp Upogebia cf. pusilla. At completion, mud shrimp exhibited substantial Cd bioaccumulation, with parasitized organisms showing a significantly lower contaminant burden than unparasitized specimens. Cadmium contamination induces modifications of gene expression in both unparasitized and parasitized organisms. We report an antagonistic effect of both stressors on gene expression, which cannot be fully explained by a lower Cd bioaccumulation. At the behaviour level, parasitism seems to reduce the sediment reworking activity of mud shrimp, while Cd contamination appears to stimulate this activity. This study highlights that the effects of multiple stressors may be quite different from the effects of each stressor considered individually. It should also motivate for more studies evaluating the influence of multiple stressors on different endpoints encompassing various levels of organization.


Assuntos
Decápodes/metabolismo , Decápodes/parasitologia , Oligoelementos/toxicidade , Poluentes Químicos da Água/toxicidade , Análise de Variância , Animais , Biodegradação Ambiental , Fenômenos Químicos , Decápodes/efeitos dos fármacos , Decápodes/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Sedimentos Geológicos/química , Especificidade de Órgãos
10.
Mar Environ Res ; 139: 87-98, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29773317

RESUMO

Marine sediments are an important source of contaminants since they are susceptible to be remobilized to the water column. By modifying the physical and biogeochemical characteristics of sediments, bioturbation can influence contaminants remobilization. Within bioturbators, mud shrimp are considered as among the most influential organisms in marine soft-bottom environments. The physiological state of mud shrimp can be impaired by bopyrid parasites. The present study aims to evaluate the influence of bopyrid-uninfested and bopyrid-infested mud shrimp on sediment contaminants resuspension. Through a 14-days ex-situ experiment we showed a moderate effect of mud shrimp on contaminant remobilization compared to molecular diffusion without the bioturbator. Conversely, parasite presence significantly impaired contaminant bioaccumulation in mud shrimp and interfered with genetic expression. The weak effect of mud shrimp on contaminant remobilization may be due to trace metal accumulation and thus we suggested to evaluate the influence of contaminants on activities of bioturbating species.


Assuntos
Decápodes/fisiologia , Sedimentos Geológicos/química , Metais/análise , Poluentes Químicos da Água/análise , Animais , Decápodes/parasitologia , Oligoelementos
11.
PLoS One ; 11(4): e0154270, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27115148

RESUMO

The effects of temperature and food addition on particle mixing in the deposit-feeding bivalve Abra alba were assessed using an experimental approach allowing for the tracking of individual fluorescent particle (luminophore) displacements. This allowed for the computations of vertical profiles of a set of parameters describing particle mixing. The frequency of luminophore displacements (jumps) was assessed through the measurement of both waiting times (i.e., the time lapses between two consecutive jumps of the same luminophore) and normalized numbers of jumps (i.e., the numbers of jumps detected in a given area divided by the number of luminophores in this area). Jump characteristics included the direction, duration and length of each jump. Particle tracking biodiffusion coefficients (Db) were also computed. Data originated from 32 experiments carried out under 4 combinations of 2 temperature (Te) and 2 food addition (Fo) levels. For each of these treatments, parameters were computed for 5 experimental durations (Ed). The effects of Se, Fo and Ed were assessed using PERmutational Multivariate ANalyses Of VAriance (PERMANOVAs) carried out on vertical depth profiles of each particle mixing parameter. Inversed waiting times significantly decreased with Ed whereas the normalized number of jumps did not, thereby suggesting that it constitutes a better proxy of jump frequency when assessing particle mixing based on the measure of individual particle displacements. Particle mixing was low during autumn temperature experiments and not affected by Fo, which was attributed to the dominant effect of low temperature. Conversely, particle mixing was high during summer temperature experiments and transitory inhibited by food addition. This last result is coherent with the functional responses (both in terms of activity and particle mixing) already measured for individual of the closely related clam A. ovata originating from temperate populations. It also partly resulted from a transitory switch between deposit- and suspension-feeding caused by the high concentration of suspended particulate organic matter immediately following food addition.


Assuntos
Bivalves/fisiologia , Comportamento Alimentar/fisiologia , Medições Luminescentes/métodos , Material Particulado/análise , Imagem com Lapso de Tempo/métodos , Ração Animal , Animais , Bivalves/ultraestrutura , Tamanho da Partícula , Suspensões , Temperatura , Imagem com Lapso de Tempo/instrumentação
12.
Mar Pollut Bull ; 56(4): 704-22, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18325541

RESUMO

The ability of the two synthetic marine biotic indices, AMBI and M-AMBI, to account for changes in the ecological quality of coastal soft bottoms of Reunion Island according to disturbances was assessed from macrobenthic samples collected in five sectors between 1994 and 2004. Samples were collected under non-perturbed conditions and at two sites subjected to heavy organic enrichment. Both indices are based on a classification of macrofauna into ecological groups (EG), and their transfer to tropical waters required some adaptations. These indices proved efficient in detecting a degradation of habitat quality. Their use resulted in the classification of all sites sampled between 1996 and 1998 as "good" or "high". M-AMBI nevertheless tended to result in the attribution of a slightly worse ecological quality status than AMBI. Together with an update of the EG species list for the Indian Ocean area, our results support the extension of both indices for the assessment of tropical soft bottoms.


Assuntos
Ecossistema , Sedimentos Geológicos , Biologia Marinha/métodos , Animais , Geografia , Ilhas do Oceano Índico , Invertebrados/fisiologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...