Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Org Chem ; 89(7): 5098-5103, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38452258

RESUMO

We report herein the synthesis and characterization of a phosphorus-containing cyclic azobenzene as a new photoswitchable scaffold. This backbone reveals high bidirectional photoswitching yields and high thermal stability for both isomers, with t1/2 > 90 days at 60 °C. Both E- and Z-isomers have been characterized by UV-vis spectroscopy and X-ray crystallography.

2.
Chemistry ; 30(23): e202304278, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38372462

RESUMO

The study introduces a novel C3-symmetric ß-diketone compound, BTA-D3, and its monomeric counterpart, D, with a focus on their synthetic procedure, photophysical properties and aggregation behavior. Both compounds exhibit characteristic absorption and weak fluorescence in solution, with BTA-D3 displaying higher absorption coefficients due to its larger number of diketone units. Density Functional Theory (DFT) calculations suggest increased co-planarity of diketone groups in BTA-D3. A significant finding is the Aggregation-Induced Emission (AIE) property of BTA-D3, as its fluorescence intensity increases dramatically when exposed to specific solvent ratios. The AIE behavior is attributed to intermolecular excitonic interaction between BTA-D3 molecules in self-organized aggregates. We also studied fluorescence anisotropy of BTA-D3 and D. Despite its larger size, BTA-D3 showed reduced anisotropy values because of efficient intramolecular energy migration among three diketone units. Furthermore, BTA-D3 demonstrates unique polymorphism, yielding different emission colors and structures depending on the solvent used. A unique approach is presented for promoting the growth of self-organized aggregate structures via solvent evaporation, leading to distinct fluorescence properties. This research contributes to the understanding of C3-symmetric structural molecules and provides insights into strategies for controlling molecular alignment to achieve diverse fluorescence coloration in molecular materials.

3.
J Org Chem ; 88(13): 8674-8689, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37341522

RESUMO

ß-cyclodextrin (ßCyD) derivatives equipped with aromatic appendages at the secondary face exhibit tailorable self-assembling capabilities. The aromatic modules can participate in inclusion phenomena and/or aromatic-aromatic interactions. Supramolecular species can thus form that, at their turn, can engage in further co-assembling with third components in a highly regulated manner; the design of nonviral gene delivery systems is an illustrative example. Endowing such systems with stimuli responsiveness while keeping diastereomeric purity and a low synthetic effort is a highly wanted advancement. Here, we show that an azobenzene moiety can be "clicked" to a single secondary O-2 position of ßCyD affording 1,2,3-triazole-linked ßCyD-azobenzene derivatives that undergo reversible light-controlled self-organization into dimers where the monomer components face their secondary rims. Their photoswitching and supramolecular properties have been thoroughly characterized by UV-vis absorption, induced circular dichroism, nuclear magnetic resonance, and computational techniques. As model processes, the formation of inclusion complexes between a water-soluble triazolylazobenzene derivative and ßCyD as well as the assembly of native ßCyD/ßCyD-azobenzene derivative heterodimers have been investigated in parallel. The stability of the host-guest supramolecules has been challenged against the competitor guest adamantylamine and the decrease of the medium polarity using methanol-water mixtures. The collective data support that the E-configured ßCyD-azobenzene derivatives, in aqueous solution, form dimers stabilized by the interplay of aromatic-aromatic and aromatic-ßCyD cavity interactions after partial reciprocal inclusion. Photoswitching to the Z-isomer disrupts the dimers into monomeric species, offering opportunity for the spatiotemporal control of the organizational status by light.


Assuntos
beta-Ciclodextrinas , Dimerização , Compostos Azo , Polímeros , Água
4.
J Org Chem ; 87(24): 16165-16174, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36445318

RESUMO

Molecular photoswitches capable of reversible photoswitching in aqueous media are highly demanded for various biological applications and photopharmacology. Carbohydrates, as natural and abundant raw materials, provide opportunity to make photoswitches water-soluble through linking sugar to the photoswitching molecules. We have developed a one-pot synthesis method to prepare water-soluble glycosyl azobenzenes through DMC (2-chloro-1,3-dimethylimidazolinium chloride)-mediated glycosylation between sugar and dihydroxyazobenzenes (DHABs) in aqueous media. The scope of the method has been investigated with different mono- and disaccharides, as well as with p,p'- and o,o'-DHAB, with excellent 1,2-trans stereoselectivity. Diglycosylation products can also be obtained with an excess amount of monosaccharides in one step. We have also demonstrated the possibility of further functionalization on the azobenzene moiety of glycosyl azobenzene. Both mono- and diglycosyl azobenzenes showed excellent photoswitching properties in water with high fatigue resistance and good thermostability for the Z-isomers. Excellent E → Z photoisomerization of both mono- and diglycosylated azobenzenes (Z/E = 99/1) is observed under illumination at 365 nm, while back Z → E photoisomerization can be achieved with blue light (with E/Z = 80/20 at PSS485 for the diglycosyl derivative).


Assuntos
Compostos Azo , Água , Luz , Carboidratos , Açúcares
5.
Chemistry ; 28(68): e202202071, 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36065043

RESUMO

Multichromophoric systems showing both fluorescence and photoisomerization are fascinating, with complex interchromophoric interactions. The experimental and theoretical study of a series of compounds, bearing a variable number of 4-dicyanomethylene-2-tert-butyl-6-(p-(N-(2-azidoethyl)-N-methyl)aminostyryl)-4H-pyran (DCM) units are reported. The photophysical properties of multi-DCM derivatives, namely 2DCM and 3DCM, were compared to the single model azido-functionalized DCM, in the E and Z isomers. The (EE)-2DCM and (EEE)-3DCM were synthesized via the click reaction. Steady-state spectroscopy and photokinetics experiments under UV or visible irradiation indicated the presence of intramolecular energy transfer processes among the DCM units. Homo- and hetero-energy transfer processes between adjacent chromophores were confirmed by fluorescence anisotropy and decays. Molecular dynamics simulations for 2DCM were carried out and analyzed using a Markov state model, providing geometrical parameters (orientation and distance between chromophores) and energy transfer efficiency. This work contributes to a better understanding and rationalization of multiple energy transfer processes occuring within multichromophoric systems.


Assuntos
Transferência de Energia
6.
J Org Chem ; 87(13): 8534-8543, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35729754

RESUMO

Macrocyclic glycoazobenzenes, as an emerging class of photoswitchable chiral macrocyclic compounds, have shown interesting properties since their discovery in 2017. We have recently employed the azobenzene-ester-linked glycosyl donor-acceptor pairs to study the influence of photoisomerization on intramolecular glycosylation. To continue the investigation on the stereoselectivity aspect of glycosylation and also to enlarge the diversity of photoswitchable glycomacrocycles, we have chosen azobenzene-triazole linkers in the present study and shown that the stereoselectivity of the glycosylation is dependent on the linker length, the configuration of the azobenzene template, as well as the reaction concentration. We have optimized the reaction conditions to prepare in good yields new glycomacrocycles, which displayed excellent photochromic properties. The influence of glycosylation reagents and acidity on the stability of the Z-azobenzene substrates and cyclic glycoazobenzenes has also been investigated, demonstrating that isomerization of macrocyclic azobenzene can be tuned by photo-, thermo-, and acid stimulus.


Assuntos
Compostos Azo , Compostos Macrocíclicos , Compostos Azo/química , Glicosilação , Isomerismo
7.
Phys Chem Chem Phys ; 24(10): 6282-6289, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35230364

RESUMO

A combination of experimental and theoretical investigations of a photoisomerizable analog of 4-dicyanomethylene-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran (DCM) dye molecule is presented. We provide evidence that the 4 main isomers and conformers of DCM contribute to its photochemical and photophysical processes. The absorption and emission spectra, as well as time-resolved fluorescence experimental results, are discussed and compared to DFT/TDDFT calculations. The E ↔ Z isomerization is induced photochemically, whereas the s-cis ↔ s-trans conformational interconversion is a thermal process which may also happen during irradiation. The photoreaction pathways from the first excited state down to the ground state are shown to be mediated by two conical intersections, as revealed using spin-flip TDDFT calculations. The rationalization of these isomerization schemes provides important insights into the photophysical properties of DCM, responsible for its photoswitchable fluorescence.

8.
Chem Commun (Camb) ; 57(78): 10079-10082, 2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34514480

RESUMO

We disclose here dibenzotriazonines as a new class of nine-membered cyclic azobenzenes displaying a nitrogen function in the saturated ring chain. The specific features of these compounds are (i) a preferred E-configuration, (ii) high bi-directional photoswitching and (iii) good thermal stability of both E- and Z-forms.

9.
RSC Adv ; 11(12): 7043-7050, 2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35423205

RESUMO

A one-pot synthesis of gold nano-objects is described by simply mixing a gold salt (HAuCl4), dodecanethiol and 3,6-di-2-pyridyl-1,2,4,5-tetrazine. When a large excess of thiol is used, gold nanoclusters of 2 nm are obtained in a large amount and with a narrow size distribution. The reaction mechanism was investigated by absorption and emission spectroscopies and shows the in situ formation of dihydrotetrazine acting as the reductant of Au(iii) to make Au(0). Au nanoclusters were isolated from the molecular precursors by HPLC. The nature of the ligands stabilizing Au nanoclusters was investigated by various techniques such as mass spectrometry, SEM-EDS, XPS and NMR. Thiol and tetrazine are shown to play both the role of ligand stabilizing the clusters. Finally, when a much smaller amount of thiol is used, a mixture of Au nanoclusters and Au nanoparticles of 10-15 nm, sometimes aggregated into clusters of 50 nm is obtained. The formation of larger nanoobjects is explained by the lower amount of thiol available to block the growth at the early stage as shown by UV-vis absorption monitoring.

10.
ACS Appl Mater Interfaces ; 12(46): 52146-52155, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33141559

RESUMO

We demonstrate photoresponsive cholesteric liquid crystals (CLCs) doped with glycomacrocyclic azobenzene derivatives, which exhibit large conformational changes, providing dynamic control of helical superstructures in response to a light stimulus. An unprecedented shortening of the helical pitch length and the empowerment of helical twisting power up to 500% are observed upon trans (E) to cis (Z) photoisomerization. Light-driven dynamic helix twisting and untwisting behavior affords the first example of glycomacrocyclic azobenzene-based CLCs, which can drive the mechanical movement of micro-objects. Two modes of rotation-two-directional or one-directional rotational motion (crankshaft mode)-are realized. In particular, the latter mode based on the reversible cholesteric texture transition between homogeneous stripes and focal conics leads to the accumulation of the rotation angles achieving the amplified mechanical movements.

11.
Chemistry ; 26(63): 14256, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33063381

RESUMO

Invited for the cover of this issue are Juan Xie, Rémi Métivier and co-workers at Université Paris-Saclay and Università di Bologna. The image depicts the fluorescence of the DCM molecule reported in this manuscript. Read the full text of the article at 10.1002/chem.202002828.

12.
Chemistry ; 26(63): 14341-14350, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-32652655

RESUMO

Although 4-dicyanomethylene-2-methyl-6-(p-dimethylamino-styryl)-4H-pyran (DCM) has been known for many decades as a bright and photostable fluorophore, used for a wide variety of applications in chemistry, biology and physics, only little attention has been paid so far to the presence of multiple isomers and conformers, namely s-trans-(E), s-cis-(E), s-trans-(Z), and s-cis-(Z). In particular, light-induced E-Z isomerization plays a great role on the overall photophysical properties of DCM. Herein, we give a full description of a photoswitchable DCM derivative by a combination of structural, theoretical and spectroscopic methods. The main s-trans-(E) isomer is responsible for most of the fluorescence features, whereas the s-cis-(E) conformer only contributes marginally. The non-emitting Z isomers are generated in large conversion yields upon illumination with visible light (e.g., 485 or 514 nm) and converted back to the E forms by UV irradiation (e.g., 365 nm). Such photoswitching is efficient and reversible, with high fatigue resistance. The E→Z and Z→E photoisomerization quantum yields were determined in different solvents and at different irradiation wavelengths. Interestingly, the fluorescence and photoisomerization properties are strongly influenced by the solvent polarity: the fluorescence is predominant at higher polarity, whereas photoisomerization becomes more efficient at lower polarity. Intermediate medium (THF) represents an optimized situation with a good balance between these two features.

13.
Chem Commun (Camb) ; 56(22): 3261-3264, 2020 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-32101198

RESUMO

An intramolecular glycosylation strategy was used to synthesize a series of new glycoazobenzene macrocycles with high α-selectivity and interesting chiroptical properties. The photoisomerization of an azobenzene template influences mainly the efficiency of the glycosylation.

14.
J Am Chem Soc ; 142(4): 1925-1932, 2020 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-31884796

RESUMO

As a result of their high specificity for their corresponding biological targets, peptides have shown significant potential in a range of diagnostic and therapeutic applications. However, their widespread use has been limited by their minimal cell permeability and stability in biological milieus. We describe here a hepta-dicyanomethylene-4H-pyran appended ß-cyclodextrin (DCM7-ß-CD) that acts as a delivery enhancing "host" for 1-bromonaphthalene-modified peptides, as demonstrated with peptide probes P1-P4. Interaction between the fluorescent peptides P1-P3 and DCM7-ß-CD results in the hierarchical formation of unique supramolecular architectures, which we term supramolecular-peptide-dots (Spds). Each Spd (Spd-1, Spd-2, and Spd-3) was found to facilitate the intracellular delivery of the constituent fluorescent probes (P1-P3), thus allowing spatiotemporal imaging of an apoptosis biomarker (caspase-3) and mitosis. Spd-4, incorporating the antimicrobial peptide P4, was found to provide an enhanced therapeutic benefit against both Gram-positive and Gram-negative bacteria relative to P4 alone. In addition, a fluorescent Spd-4 was prepared, which revealed greater bacterial cellular uptake compared to the peptide alone (P4-FITC) in E. coli. (ATCC 25922) and S. aureus (ATCC 25923). This latter observation supports the suggestion that the Spd platform reported here has the ability to facilitate the delivery of a therapeutic peptide and provides an easy-to-implement strategy for enhancing the antimicrobial efficacy of known therapeutic peptides. The present findings thus serve to highlight a new and effective supramolecular delivery approach that is potentially generalizable to overcome limitations associated with functional peptides.


Assuntos
Antibacterianos/farmacologia , Ciclodextrinas/química , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Imagem Óptica/métodos , Peptídeos/química , Antibacterianos/química , Testes de Sensibilidade Microbiana
15.
Org Biomol Chem ; 16(35): 6552-6563, 2018 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-30168548

RESUMO

Hitherto unknown chromophoric nucleosides are reported. This novel set of visibly coloured dye-labeled 5'-nucleosides, including 1,2,4,5-tetrazine, dicyanomethylene-4H-pyran, benzophenoxazinone, 9,10-anthraquinone and azobenzene chromophores, were prepared mainly under Cu-catalyzed azide-alkyne cycloaddition (CuAAC). The design criteria are outlined. Several derivatives possess in supplement a fluorescence property. The absorption and fluorescence spectra of all coloured nucleosides were recorded to study their potential as visible-range probes. Such nucleodyes are of great interest for future competitive lateral flow test MIP-based strips.


Assuntos
Corantes/química , Ribonucleosídeos/química , Ribonucleosídeos/síntese química , Técnicas de Química Sintética , Cor , Espectrometria de Fluorescência
16.
Chemistry ; 23(60): 14996-15001, 2017 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-28858420

RESUMO

A one-pot O-alkylation mediated macrocyclization approach has been used for the synthesis of carbohydrate-based macrocyclic azobenzene. The synthesized macrocycle can be reversibly isomerized between E and Z isomers upon UV or visible irradiation with excellent photostability and thermal stability (t1/2 =51 days at 20 °C for the Z isomer). A chirality transfer from the chiral sugar unit to azobenzene was observed by circular dichroism (CD). DFT and TD-DFT calculations were performed to calculate the optimal geometry and the theoretical absorption and CD spectra. Comparison of the experimental CD spectra with the theoretical ones suggests that both E- and Z-macrocycles adopt preferentially P-helicity for the azobenzene moiety. Furthermore, the macrocycle showed gelation ability in cyclohexane and ethanol with multistimuli-responsive behavior upon exposure to environmental stimuli including thermal-, photo-, and mechanical responses. Moreover, these organogels display temperature-dependent helical inversion, which can be tuned by a repeated heating-cooling procedure.


Assuntos
Compostos Azo/química , Carboidratos/química , Compostos Azo/síntese química , Dicroísmo Circular , Géis/química , Compostos Macrocíclicos/síntese química , Compostos Macrocíclicos/química , Espectroscopia de Ressonância Magnética , Transição de Fase , Estereoisomerismo , Temperatura , Raios Ultravioleta
17.
Biologicals ; 44(3): 139-49, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27033773

RESUMO

Residual host cellular DNA (rcDNA) is one of the principal risk associated with continuous cell lines derived medicines such as viral vaccines. To assess rcDNA degradation, we suggest two quantitative real-time PCR assays designed to separately quantify target sequences shorter and longer than the 200 bp risk limit, the relative abundance of both targets reflecting the extent of rcDNA fragmentation. The conserved multicopy ribosomal 18S RNA gene was targeted to detect host cell templates from most mammalian cell substrates commonly used in the manufacture of human viral vaccines. The detection range of the method was assessed on purified DNA templates from different animal origins. The standard calibrator origin and structural conformation were shown crucial to achieve accurate quantification. Artificial mixtures of PCR products shorter and longer than 200 bp were used as a model to check the ability of the assay to estimate the fragment size distribution. The method was successfully applied to a panel of Vero cell derived vaccines and could be used as a universal method for determination of both content and size distribution of rcDNA in vaccines.


Assuntos
DNA/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Vacinas Virais/genética , Vírus/genética , Animais , Células CHO , Linhagem Celular , Chlorocebus aethiops , Cricetinae , Cricetulus , DNA/metabolismo , Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Cães , Contaminação de Medicamentos/prevenção & controle , Estudos de Viabilidade , Humanos , Células Madin Darby de Rim Canino , RNA Ribossômico 18S/genética , Reprodutibilidade dos Testes , Células Vero , Vacinas Virais/imunologia , Vacinas Virais/metabolismo , Vírus/imunologia , Vírus/metabolismo
18.
Chem Commun (Camb) ; 50(91): 14141-4, 2014 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-25278331

RESUMO

Fluorogenic supramolecular complexes formed between tubular-shaped pyrenyl-ß-cyclodextrins and glyco-rhodamine are determined to respond to a selective lectin with 'turn-on' fluorescence with excellent selectivity over a range of competing species.

19.
Beilstein J Org Chem ; 10: 1471-81, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24991302

RESUMO

A multichromophoric glucopyranoside 2 bearing three dicyanomethylenepyran (DCM) fluorophores and one diarylethene (DAE) photochrome has been prepared by Cu(I)-catalyzed alkyne-azide cycloaddition reaction. The fluorescence of 2 was switched off upon UV irradiation, in proportion with the open to closed form (OF to CF) conversion extent of the DAE moiety. A nearly 100% Förster-type resonance energy transfer (FRET) from all three DCM moieties to a single DAE (in its CF) moiety was achieved. Upon visible irradiation, the initial fluorescence intensity was recovered. The observed photoswiching is reversible, with excellent photo resistance.

20.
Photochem Photobiol Sci ; 11(11): 1705-14, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22868638

RESUMO

A thorough photophysical study of a photochrome-fluorophore dyad (3), combining a fluorescent laser dye (DCM-type, , Φ(1) = 0.27) and a photochromic diarylethene (2), obtained by click chemistry, is presented. In addition to photochromism, the open form (OF) of 2 exhibits fluorescence (Φ(-OF) = 0.016), whereas the closed form (CF) does not. Fluorescence is switched upon alternate UV/visible irradiation of 2. The emission band of 2-OF matches the absorption band of 1 (400-550 nm), whereas the emission band of 1 overlaps the absorption band of 2-CF (550-700 nm). Therefore, a photoreversible two-way excitation energy transfer (EET), controlled by the state of the photochromic moiety, is obtained in the dyad 3. Their efficiencies are quantified as Φ(EET)(OF→F) = 85% and as Φ(EET)(F→CF) ~ 100% from the comparison of emission and excitation spectra between 1, 2, and 3. These results are fully compatible with the shortening of fluorescence lifetimes (from τ(-OF) = 70 ps and 170 ps essentially to τ(-OF) < 10 ps) and to the values of Förster radii determined for 3 (R(0)(OF → F) = 29 Å and R(0)(F → CF) = 71 Å), evidencing a Förster-type resonance energy transfer mechanism (FRET). An important outcome of this two-way FRET is the possibility to quench 49% of the fluorescence in 3 at PSS upon UV irradiation, corresponding to the conversion extent of the photochromic reaction, which is different from 2 (α(CF) = 91%). This is a clear example of a situation where the presence of FRET between the photochromic unit and the fluorophore affects noticeably the photochromic properties of the dyad molecule 3.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...