Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Bioinformatics ; 38(12): 3299-3301, 2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35532115

RESUMO

SUMMARY: Molecular dynamics (MD) simulations have become an integral part of biomolecular study. Most MD software suites do not include analysis tools and those which do create very basic visualizations. Molecular Dynamics Data Visualizer (MD DaVis) is a python package developed to facilitate quick comparative analysis of MD trajectories of similar proteins or the same protein under different conditions. MD DaVis can quickly generate interactive visualization from molecular dynamics trajectories with a few simple steps. Interactive plots eliminate the need to make multiple plots for comparison, improving productivity and saving time. AVAILABILITY AND IMPLEMENTATION: MD DaVis is an open-source Python 3 package (https://pypi.org/project/md-davis/) distributed under MIT license. The source code is available at https://github.com/djmaity/md-davis or https://doi.org/10.5281/zenodo.6227047. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Visualização de Dados , Simulação de Dinâmica Molecular , Software , Proteínas
3.
Viruses ; 14(4)2022 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-35458565

RESUMO

Combined in silico, in vitro, and in vivo comparative studies between isogenic-recombinant Mouse-Hepatitis-Virus-RSA59 and its proline deletion mutant, revealed a remarkable contribution of centrally located two consecutive prolines (PP) from Spike protein fusion peptide (FP) in enhancing virus fusogenic and hepato-neuropathogenic potential. To deepen our understanding of the underlying factors, we extend our studies to a non-fusogenic parental virus strain RSMHV2 (P) with a single proline in the FP and its proline inserted mutant, RSMHV2 (PP). Comparative in vitro and in vivo studies between virus strains RSA59(PP), RSMHV2 (P), and RSMHV2 (PP) in the FP demonstrate that the insertion of one proline significantly resulted in enhancing the virus fusogenicity, spread, and consecutive neuropathogenesis. Computational studies suggest that the central PP in Spike FP induces a locally ordered, compact, and rigid structure of the Spike protein in RSMHV2 (PP) compared to RSMHV2 (P), but globally the Spike S2-domain is akin to the parental strain RSA59(PP), the latter being the most flexible showing two potential wells in the energy landscape as observed from the molecular dynamics studies. The critical location of two central prolines of the FP is essential for fusogenicity and pathogenesis making it a potential site for designing antiviral.


Assuntos
Doenças Desmielinizantes , Glicoproteína da Espícula de Coronavírus , Animais , Camundongos , Peptídeos/metabolismo , Prolina , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Proteínas do Envelope Viral/metabolismo
4.
J Phys Chem B ; 125(35): 9921-9933, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34459602

RESUMO

In sickle cell anemia, deoxyhemoglobin deforms RBCs by forming fibrils inside that disintegrate on oxygenation. We studied 100 ns long all-atom molecular dynamics (MD) for sickle and normal hemoglobin fibril models to understand this process, complemented by multiple 1 µs MD for a single tetramer of sickle and normal hemoglobin in deoxy and oxy states. We find that the presence of hydrophobic residues without a bulky side chain at ß-6 in hemoglobin is the reason for the stability of the fibrils. Moreover, the free energy landscapes from MD of hemoglobin starting in the tensed (T) state capture the putative transition from T to relaxed (R) state, associated with oxygen binding. The three conformational wells in the landscapes are characterized by the quaternary changes where one αß dimer rotates with respect to the other. The conformational changes from the oxygenation of sickle hemoglobin hinder the intermolecular contacts necessary for fibril formation.


Assuntos
Anemia Falciforme , Simulação de Dinâmica Molecular , Eritrócitos , Hemoglobina Falciforme , Hemoglobinas , Humanos
5.
Sci Rep ; 10(1): 8290, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32427833

RESUMO

Alpha1-antitrypsin (α1AT) is an abundant serine-protease inhibitor in circulation. It has an important role in neutralizing the neutrophil elastase activity. Different pathogenic point mutations like Z(E342K)-α1AT have been implicated in the development of liver cirrhosis and Chronic Obstructive Pulmonary Disease (COPD), the latter being a cluster of progressive lung diseases including chronic bronchitis and emphysema. M3-α1AT (376Glu > Asp) is another variant of α1AT which so far is largely being considered as normal though increased frequency of the variant has been reported in many human diseases including COPD. We also observed increased frequency of M3-α1AT in COPD cases in Kashmiri population. The frequency of heterozygous (AC) genotype in cases and controls was 58.57% and 27.61% (odds-ratio 6.53 (2.27-15.21); p < 0.0001) respectively, while homozygous CC genotype was found to be 21.42% and 6.66% (odds-ratio 10.56 (3.63-18.64); p < 0.0001) respectively. Comparative in vitro investigations that include trypsin‒antitrypsin assay, Circular Dichroism spectroscopy and dynamic light scattering performed on wild-type (M-α1AT), M3-α1AT, and Z-α1AT proteins along with the molecular dynamics simulations revealed that M3-α1AT has properties similar to Z-α1AT capable of forming aggregates of varied size. Our maiden observations suggest that M3-α1AT may contribute to the pathogenesis of COPD and other disorders by mechanisms that warrant further investigations.


Assuntos
Substituição de Aminoácidos , Doença Pulmonar Obstrutiva Crônica/genética , alfa 1-Antitripsina/química , alfa 1-Antitripsina/genética , Estudos de Casos e Controles , Dicroísmo Circular , Difusão Dinâmica da Luz , Feminino , Genótipo , Humanos , Masculino , Simulação de Dinâmica Molecular , Agregados Proteicos , Tripsina/metabolismo
6.
J Struct Biol ; 208(3): 107386, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31518635

RESUMO

Glutathionylation is an example of reversible post-translation modification of proteins where free and accessible cysteine residues of proteins undergo thiol-disulfide exchange with oxidized glutathione (GSSG). In general, glutathionylation occurs under the condition of elevated oxidative stress in vivo. In human hemoglobin, Cys93 residue of ß globin chain was found to undergo this oxidative modification. Glutathionyl hemoglobin (GSHb) was reported to act as a biomarker of oxidative stress under several clinical conditions such as chronic renal failure, iron deficiency anemia, hyperlipidemia, diabetes mellitus, Friedreich's ataxia, atherosclerosis. Previously we showed that the functional abnormality associated with six-fold tighter oxygen binding of GSHb supposedly attributed to the conformational transition of the deoxy state of GSHb towards oxy hemoglobin like conformation. In the present study, we investigated the structural integrity and overall architecture of the quaternary structure of GSHb using native mass spectrometry and ion mobility mass spectrometry platforms. The dissociation equilibrium constants of both tetramer/dimer (Kd1) and dimer/monomer equilibrium (Kd2) was observed to increase by 1.91 folds and 3.64 folds respectively. However, the collision cross-section area of the tetrameric hemoglobin molecule remained unchanged upon glutathionylation. The molecular dynamics simulation data of normal human hemoglobin and GSHb was employed to support our experimental findings.


Assuntos
Glutationa/química , Hemoglobinas/química , Cisteína/química , Cisteína/metabolismo , Glutationa/metabolismo , Hemoglobinas/metabolismo , Humanos , Ligação de Hidrogênio , Espectrometria de Mobilidade Iônica , Espectrometria de Massas/métodos , Simulação de Dinâmica Molecular , Multimerização Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo
7.
J Biol Chem ; 294(20): 8064-8087, 2019 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-30824541

RESUMO

Fusion peptides (FPs) in spike proteins are key players mediating early events in cell-to-cell fusion, vital for intercellular viral spread. A proline residue located at the central FP region has often been suggested to have a distinctive role in this fusion event. The spike glycoprotein from strain RSA59 (PP) of mouse hepatitis virus (MHV) contains two central, consecutive prolines in the FP. Here, we report that deletion of one of these proline residues, resulting in RSA59 (P), significantly affected neural cell syncytia formation and viral titers postinfection in vitro Transcranial inoculation of C57Bl/6 mice with RSA59 (PP) or RSA59 (P) yielded similar degrees of necrotizing hepatitis and meningitis, but only RSA59 (PP) produced widespread encephalitis that extended deeply into the brain parenchyma. By day 6 postinfection, both virus variants were mostly cleared from the brain. Interestingly, inoculation with the RSA59 (P)-carrying MHV significantly reduced demyelination at the chronic stage. We also found that the presence of two consecutive prolines in FP promotes a more ordered, compact, and rigid structure in the spike protein. These effects on FP structure were due to proline's unique stereochemical properties intrinsic to its secondary amino acid structure, revealed by molecular dynamics and NMR experiments. We therefore propose that the differences in the severity of encephalitis and demyelination between RSA59 (PP) and RSA59 (P) arise from the presence or absence, respectively, of the two consecutive prolines in FP. Our studies define a structural determinant of MHV entry in the brain parenchyma important for altered neuropathogenesis.


Assuntos
Encéfalo , Doenças Desmielinizantes , Mutação INDEL , Meningite Viral , Vírus da Hepatite Murina , Proteínas do Envelope Viral , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/virologia , Linhagem Celular , Doenças Desmielinizantes/genética , Doenças Desmielinizantes/metabolismo , Doenças Desmielinizantes/patologia , Doenças Desmielinizantes/virologia , Meningite Viral/genética , Meningite Viral/metabolismo , Meningite Viral/patologia , Meningite Viral/virologia , Camundongos , Vírus da Hepatite Murina/química , Vírus da Hepatite Murina/genética , Vírus da Hepatite Murina/metabolismo , Ressonância Magnética Nuclear Biomolecular , Prolina , Domínios Proteicos , Relação Estrutura-Atividade , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo
8.
Biochem J ; 475(13): 2153-2166, 2018 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-29858275

RESUMO

In sickle cell anemia, polymerization of hemoglobin in its deoxy state leads to the formation of insoluble fibers that result in sickling of red blood cells. Stereo-specific binding of isopropyl group of ßVal6, the mutated amino-acid residue of a tetrameric sickle hemoglobin molecule (HbS), with hydrophobic groove of another HbS tetramer initiates the polymerization. Glutathionylation of ßCys93 in HbS was reported to inhibit the polymerization. However, the mechanism of inhibition in polymerization is unknown to date. In our study, the molecular insights of inhibition in polymerization were investigated by monitoring the conformational dynamics in solution phase using hydrogen/deuterium exchange-based mass spectrometry. The conformational rigidity imparted due to glutathionylation of HbS results in solvent shielding of ßVal6 and perturbation in the conformation of hydrophobic groove of HbS. Additionally, molecular dynamics simulation trajectory showed that the stereo-specific localization of glutathione moiety in the hydrophobic groove across the globin subunit interface of tetrameric HbS might contribute to inhibition in polymerization. These conformational insights in the inhibition of HbS polymerization upon glutathionylation might be translated in the molecularly targeted therapeutic approaches for sickle cell anemia.


Assuntos
Medição da Troca de Deutério , Hemoglobina Falciforme/química , Espectrometria de Massas , Simulação de Dinâmica Molecular , Multimerização Proteica , Glutationa/química , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA