Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
3 Biotech ; 13(12): 385, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37928438

RESUMO

The aim of our study was to investigate the potential of rutin, catechin, dehydrozingerone, naringenin, and quercetin, both alone and in combination with temozolomide, to inhibit the expression of O6-methylguanine-DNA methyltransferase (MGMT) in glioma cells. MGMT has been shown to be a major cause of temozolomide resistance in glioma. Our study used both in silico and in vitro methods to assess the inhibitory activity of these phytochemicals on MGMT, with the goal of identifying the most effective combination of compounds for reducing temozolomide resistance. After conducting an initial in silico screening of natural compounds against MGMT protein, five phytochemicals were chosen based on their high docking scores and favorable binding energies. From the molecular docking and simulation studies, we found that quercetin showed a good inhibitory effect of MGMT with its high binding affinity. C6 glioma cells showed increased cytotoxicity when treated with the temozolomide and quercetin combination. It was understood from the isobologram and combination index plot that the drug combination showed a synergistic effect at the lowest dose. Quercetin when combined with temozolomide significantly decreased the MGMT levels in C6 cells in comparison with the other drugs as estimated by ELISA. The percentage of apoptotic cells increased significantly in the temozolomide-quercetin group indicating the potency of quercetin in decreasing the resistance of temozolomide as confirmed by acridine orange/ethidium bromide staining. Our experiment hence suggests that temozolomide resistance can be reduced by combining the drug with quercetin which will serve as an effective therapeutic target for glioblastoma treatment. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03821-7.

2.
Sci Rep ; 13(1): 7947, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37193898

RESUMO

Non-small cell lung carcinomas (NSCLC) are the predominant form of lung malignancy and the reason for the highest number of cancer-related deaths. Widespread deregulation of Akt, a serine/threonine kinase, has been reported in NSCLC. Allosteric Akt inhibitors bind in the space separating the Pleckstrin homology (PH) and catalytic domains, typically with tryptophan residue (Trp-80). This could decrease the regulatory site phosphorylation by stabilizing the PH-in conformation. Hence, in this study, a computational investigation was undertaken to identify allosteric Akt-1 inhibitors from FDA-approved drugs. The molecules were docked at standard precision (SP) and extra-precision (XP), followed by Prime molecular mechanics-generalized Born surface area (MM-GBSA), and molecular dynamics (MD) simulations on selected hits. Post XP-docking, fourteen best hits were identified from a library of 2115 optimized FDA-approved compounds, demonstrating several beneficial interactions such as pi-pi stacking, pi-cation, direct, and water-bridged hydrogen bonds with the crucial residues (Trp-80 and Tyr-272) and several amino acid residues in the allosteric ligand-binding pocket of Akt-1. Subsequent MD simulations to verify the stability of chosen drugs to the Akt-1 allosteric site showed valganciclovir, dasatinib, indacaterol, and novobiocin to have high stability. Further, predictions for possible biological interactions were performed using computational tools such as ProTox-II, CLC-Pred, and PASSOnline. The shortlisted drugs open a new class of allosteric Akt-1 inhibitors for the therapy of NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Reposicionamento de Medicamentos , Simulação de Acoplamento Molecular , Neoplasias Pulmonares/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Simulação de Dinâmica Molecular
3.
Inflammopharmacology ; 31(3): 1167-1182, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36966238

RESUMO

The "Thalidomide tragedy" is a landmark in the history of the pharmaceutical industry. Despite limited clinical trials, there is a continuous effort to investigate thalidomide as a drug for cancer and inflammatory diseases such as rheumatoid arthritis, lepromatous leprosy, and COVID-19. This review focuses on the possibilities of targeting inflammation by repurposing thalidomide for the treatment of idiopathic pulmonary fibrosis (IPF). Articles were searched from the Scopus database, sorted, and selected articles were reviewed. The content includes the proven mechanisms of action of thalidomide relevant to IPF. Inflammation, oxidative stress, and epigenetic mechanisms are major pathogenic factors in IPF. Transforming growth factor-ß (TGF-ß) is the major biomarker of IPF. Thalidomide is an effective anti-inflammatory drug in inhibiting TGF-ß, interleukins (IL-6 and IL-1ß), and tumour necrosis factor-α (TNF-α). Thalidomide binds cereblon, a process that is involved in the proposed mechanism in specific cancers such as breast cancer, colon cancer, multiple myeloma, and lung cancer. Cereblon is involved in activating AMP-activated protein kinase (AMPK)-TGF-ß/Smad signalling, thereby attenuating fibrosis. The past few years have witnessed an improvement in the identification of biomarkers and diagnostic technologies in respiratory diseases, partly because of the COVID-19 pandemic. Hence, investment in clinical trials with a systematic plan can help repurpose thalidomide for pulmonary fibrosis.


Assuntos
Fibrose Pulmonar Idiopática , Imunossupressores , Talidomida , Humanos , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Pulmão/metabolismo , Talidomida/uso terapêutico , Talidomida/metabolismo , Talidomida/farmacologia , Fator de Crescimento Transformador beta/metabolismo , Imunossupressores/farmacocinética , Imunossupressores/farmacologia , Imunossupressores/uso terapêutico
4.
F1000Res ; 11: 223, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37771720

RESUMO

Background: Emvolio is a non-medical device, indigenously developed portable refrigeration for maintaining the internal temperature 2-8˚C. The Indian Patent Office has granted patent for applications such as preservation and transport of medicines, vaccines, food, beverages, dairy etc. Further, use of Emvolio can be utilized in transport and store biologicals to preserve their biochemical and cellular integrity.  The objective of this study was to evaluate the biochemical and haematological integrity of biological samples such as rat blood, serum and liver. Methods: The steady temperature was maintained inside the Emvolio, and it was compared to that of thermocol and polypropylene boxes aided with frozen gel packs. The blood and liver samples were isolated from Wistar rats and kept in Emvolio, thermocol and polypropylene boxes for 10 hrs, and the temperature was monitored. The blood parameters, namely red blood cells (RBC), white blood cells (WBC), platelets, haematocrit, haemoglobin, mean corpuscular volume (MCV), mean corpuscular haemoglobin concentration (MCHC) and red cell distribution width (RDW), serum parameters like alanine transaminase, alkaline phosphatase, total protein, albumin, creatine kinase, blood urea nitrogen and liver parameters like superoxide dismutase (SOD), glutathione (GSH), catalase were estimated and compared. Results: Emvolio maintained a constant inner temperature range of 2-8˚C, whereas a significant temperature variation was seen in thermocol and polypropylene boxes. There was no significant deviation in the parameters tested when samples were kept in Emvolio for six hours compared to the zero hour readings. In contrast, there was a significant deviation among the parameters for the samples kept in thermocol and polypropylene boxes for six hours compared to zero hour parameters. Conclusions: Emvolio maintained constant temperature and preserved the biological integrity of rat blood, serum and liver. Thus, Emvolio can be efficiently used as a biological sample carrier, especially in preclinical studies.


Assuntos
Polipropilenos , Refrigeração , Ratos , Animais , Ratos Wistar , Índices de Eritrócitos , Hematócrito
5.
Mol Divers ; 26(1): 443-466, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34331670

RESUMO

Neuroinflammation is one of the detrimental factors leading to neurodegeneration in Alzheimer's disease (AD) and other neurodegenerative disorders. The activation of microglial neurokinin 1 receptor (NK1R) by substance P (SP) enhances neuroinflammation which is mediated through pro-inflammatory pathways involving NFkB, ERK1/2, and P38 and thus projects the scope and importance of NK1R inhibitors. Emphasizing the inhibitory role of N Acetyl L Tryptophan (L-NAT) on NK1R, this is the first in silico screening of L-NAT mediated NK1R antagonism. In addition, FDA- approved ligands were screened for their potential NK1R antagonism. The L-NAT was docked in XP (Extra Precision) mode while FDA-approved ligands were screened in HTVS (High Throughput Virtual Screening), SP (Standard Precision), and XP mode onto NK1R (PDB:6HLO). The L-NAT and top 3 compounds FDA-approved ligands were subjected to molecular dynamics (MD) studies of 100 ns simulation time. The XP docking of L-NAT, indacaterol, modafinil and alosetron showed good docking scores. Their 100 ns MD showed brief protein-ligand interactions with an acceptable root mean square deviation. The protein-ligand contacts depicted pi-pi stacking, pi-cation, hydrogen bonds, and water bridges with the amino acids necessary for NK1R inhibition. The variable colour band intensities on the protein-ligand contact map indicated their binding strength with amino acids. The molecular mechanics/generalized born surface area (MM-GBSA) scores suggested favourable binding free energy of the complexes. Thus, our study predicted the ability of L-NAT, indacaterol, modafinil, and alosetron as capable NK1R inhibitors that can aid to curb neuroinflammation in conditions of AD which could be further ascertained in subsequent studies.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/tratamento farmacológico , Humanos , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Doenças Neuroinflamatórias
6.
Eur J Pharmacol ; 896: 173922, 2021 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-33539819

RESUMO

The coronavirus disease (COVID-19) is spreading between human populations mainly through nasal droplets. Currently, the vaccines have great hope, but it takes years for testing its efficacy in human. As there is no specific drug treatment available for COVID-19 pandemic, we explored in silico repurposing of drugs with dual inhibition properties by targeting transmembrane serine protease 2 (TMPRSS2) and human angiotensin-converting enzyme 2 (ACE2) from FDA-approved drugs. The TMPRSS2 and ACE2 dual inhibitors in COVID-19 would be a novel antiviral class of drugs called "entry inhibitors." For this purpose, approximately 2800 US-FDA approved drugs were docked using a virtual docking tool with the targets TMPRSS2 and ACE2. The best-fit drugs were selected as per docking scores and visual outcomes. Later on, drugs were selected on the basis of molecular dynamics simulations. The drugs alvimopan, arbekacin, dequalinum, fleroxacin, lopinavir, and valrubicin were shortlisted by visual analysis and molecular dynamics simulations. Among these, lopinavir and valrubicin were found to be superior in terms of dual inhibition. Thus, lopinavir and valrubicin have the potential of dual-target inhibition whereby preventing SARS-CoV-2 entry to the host. For repurposing of these drugs, further screening in vitro and in vivo would help in exploring clinically.


Assuntos
Enzima de Conversão de Angiotensina 2/antagonistas & inibidores , Tratamento Farmacológico da COVID-19 , COVID-19 , Doxorrubicina/análogos & derivados , Lopinavir/farmacologia , SARS-CoV-2 , Serina Endopeptidases/metabolismo , Internalização do Vírus/efeitos dos fármacos , Antivirais/farmacologia , COVID-19/metabolismo , Doxorrubicina/farmacologia , Reposicionamento de Medicamentos , Inibidores Enzimáticos/classificação , Inibidores Enzimáticos/farmacologia , Humanos , Simulação de Acoplamento Molecular/métodos , Simulação de Dinâmica Molecular , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/fisiologia , Inibidores da Topoisomerase II/farmacologia
7.
Arch Med Res ; 52(1): 38-47, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32962867

RESUMO

BACKGROUND AND AIMS: Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) induced Novel Coronavirus Disease (COVID-19) has currently become pandemic worldwide. Though drugs like remdesivir, favipiravir, and dexamethasone found beneficial for COVID-19 management, they have limitations clinically, and vaccine development takes a long time. The researchers have reported key proteins which could act as druggable targets. Among them, the major protease Mpro is first published, plays a prominent role in viral replication and an attractive drug-target for drug discovery. Hence, to target Mpro and inhibit it, we accomplished the virtual screening of US-FDA approved drugs using well-known drug repurposing approach by computer-aided tools. METHODS: The protein Mpro, PDB-ID 6LU7 was imported to Maestro graphical user interphase of Schrödinger software. The US-FDA approved drug structures are imported from DrugBank and docked after preliminary protein and ligand preparation. The drugs are shortlisted based on the docking scores in the Standard Precision method (SP-docking) and then based on the type of molecular interactions they are studied for molecular dynamics simulations. RESULTS: The docking and molecular interactions studies, five drugs emerged as potential hits by forming hydrophilic, hydrophobic, electrostatic interactions. The drugs such as arbutin, terbutaline, barnidipine, tipiracil and aprepitant identified as potential hits. Among the drugs, tipiracil and aprepitant interacted with the Mpro consistently, and they turned out to be most promising. CONCLUSIONS: This study shows the possible exploration for drug repurposing using computer-aided docking tools and the potential roles of tipiracil and aprepitant, which can be explored further in the treatment of COVID-19.


Assuntos
Antivirais/uso terapêutico , Tratamento Farmacológico da COVID-19 , Proteases 3C de Coronavírus/antagonistas & inibidores , Reposicionamento de Medicamentos/métodos , Inibidores de Proteases/uso terapêutico , SARS-CoV-2/enzimologia , Antivirais/química , Antivirais/farmacologia , COVID-19/virologia , Proteases 3C de Coronavírus/química , Proteases 3C de Coronavírus/metabolismo , Descoberta de Drogas/métodos , Humanos , Simulação de Acoplamento Molecular/métodos , Simulação de Dinâmica Molecular , Terapia de Alvo Molecular , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , SARS-CoV-2/efeitos dos fármacos
8.
F1000Res ; 9: 1166, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33204411

RESUMO

Background: The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), took more lives than combined epidemics of SARS, MERS, H1N1, and Ebola. Currently, the prevention and control of spread are the goals in COVID-19 management as there are no specific drugs to cure or vaccines available for prevention. Hence, the drug repurposing was explored by many research groups, and many target proteins have been examined. The major protease (M pro), and RNA-dependent RNA polymerase (RdRp) are two target proteins in SARS-CoV-2 that have been validated and extensively studied for drug development in COVID-19. The RdRp shares a high degree of homology between those of two previously known coronaviruses, SARS-CoV and MERS-CoV. Methods: In this study, the FDA approved library of drugs were docked against the active site of RdRp using Schrodinger's computer-aided drug discovery tools for in silico drug-repurposing. Results: We have shortlisted 14 drugs from the Standard Precision docking and interaction-wise study of drug-binding with the active site on the enzyme. These drugs are antibiotics, NSAIDs, hypolipidemic, coagulant, thrombolytic, and anti-allergics. In molecular dynamics simulations, pitavastatin, ridogrel and rosoxacin displayed superior binding with the active site through ARG555 and divalent magnesium. Conclusion: Pitavastatin, ridogrel and rosoxacin can be further optimized in preclinical and clinical studies to determine their possible role in COVID-19 treatment.


Assuntos
Antivirais , Infecções por Coronavirus/tratamento farmacológico , Reposicionamento de Medicamentos , Pneumonia Viral/tratamento farmacológico , RNA Polimerase Dependente de RNA/antagonistas & inibidores , Antivirais/farmacologia , Betacoronavirus/efeitos dos fármacos , Betacoronavirus/enzimologia , COVID-19 , Domínio Catalítico , Humanos , Simulação de Acoplamento Molecular , Pandemias , Ácidos Pentanoicos/farmacologia , Piridinas/farmacologia , Quinolinas/farmacologia , Quinolonas/farmacologia , SARS-CoV-2 , Tratamento Farmacológico da COVID-19
9.
Pharmacol Rep ; 72(4): 799-813, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32666476

RESUMO

BACKGROUND: The epidermal growth factor receptor (EGFR) inhibitors represent the first-line therapy regimen for non-small cell lung cancer (NSCLC). Most of these inhibitors target the ATP-site to stop the aggressive development of NSCLC. Stabilization of the ATP-binding on EGFR is difficult due to autophosphorylation of the EGFR domain. This leads to activation of nonintrinsic influence of the tumor microenvironment and expression of anti-apoptotic pathways and drug resistance. METHODS: The NSCLC related literature search was carried out using online databases such as Scopus, Web of Sciences, PubMed, Protein Data Bank and UniPort for the last ten years and selected articles are referred for discussion in this review. RESULTS: To overcome the problem of mutations in NSCLC, the allosteric site of EGFR was targeted, which shows significant therapeutic outcome without causing resistance. Compounds like EAI001, EAI045 JBJ-04-125-02, DDC4002 and a series of small molecules with an affinity towards the EGFR allosteric site are reported and are under the investigational stage. These compounds are categorized under fourth-generation anti-NSCLC agents. CONCLUSION: Composition of this review highlights the advantage of inhibiting allosteric site in the EGFRTK receptor domains and presents a comparative analysis of the new fourth-generation anti-NSCLC agents to overcome the drug resistance.


Assuntos
Sítio Alostérico/efeitos dos fármacos , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Sítio Alostérico/fisiologia , Animais , Antineoplásicos/administração & dosagem , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Sistemas de Liberação de Medicamentos/tendências , Resistencia a Medicamentos Antineoplásicos/fisiologia , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/química , Receptores ErbB/metabolismo , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/metabolismo , Estrutura Secundária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA